Spaces:
Running
Running
Commit
Β·
e6535be
1
Parent(s):
6640d16
Update main.py
Browse files
main.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import io
|
2 |
-
from typing import List
|
3 |
import uvicorn
|
4 |
import numpy as np
|
5 |
import uuid
|
6 |
from datetime import datetime
|
7 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
8 |
-
from fastapi.responses import JSONResponse
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
from PIL import Image
|
@@ -15,11 +15,14 @@ from src.detection import YOLOv11Detector
|
|
15 |
from src.comparison import DamageComparator
|
16 |
from src.visualization import DamageVisualizer
|
17 |
from pathlib import Path
|
|
|
|
|
|
|
18 |
|
19 |
app = FastAPI(
|
20 |
title="Car Damage Detection API",
|
21 |
-
description="YOLOv11-based car damage detection
|
22 |
-
version="1.
|
23 |
)
|
24 |
|
25 |
# Add CORS middleware
|
@@ -31,10 +34,10 @@ app.add_middleware(
|
|
31 |
allow_headers=["*"],
|
32 |
)
|
33 |
|
34 |
-
#
|
35 |
detector = None
|
36 |
-
comparator =
|
37 |
-
visualizer =
|
38 |
|
39 |
# Model paths mapping - PT and ONNX versions
|
40 |
MODEL_PATHS = {
|
@@ -81,7 +84,6 @@ PT_TO_ONNX_MAPPING = {
|
|
81 |
6: 11 # Medium v3 -> ONNX
|
82 |
}
|
83 |
|
84 |
-
|
85 |
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
|
86 |
"""
|
87 |
Enhanced model selection with performance optimization info
|
@@ -116,14 +118,10 @@ def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int
|
|
116 |
# No suitable file found
|
117 |
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
|
118 |
|
119 |
-
|
120 |
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
121 |
"""
|
122 |
-
|
123 |
-
|
124 |
-
select_models: Model selection
|
125 |
-
|
126 |
-
prefer_onnx: Whether to prefer ONNX format for fallback
|
127 |
"""
|
128 |
global detector, comparator, visualizer
|
129 |
|
@@ -144,7 +142,20 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
144 |
with open(temp_config, 'w') as f:
|
145 |
yaml.dump(config, f, default_flow_style=False)
|
146 |
|
147 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
detector = YOLOv11Detector(config_path=temp_config)
|
149 |
comparator = DamageComparator(config_path=temp_config)
|
150 |
visualizer = DamageVisualizer(config_path=temp_config)
|
@@ -152,8 +163,8 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
152 |
# Log model info with optimization status
|
153 |
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
|
154 |
model_labels = [
|
155 |
-
"Small v1", "Small v2","Small v3", "Medium v1", "Medium v2", "Medium v3",
|
156 |
-
"Small v1 ONNX", "Small v2 ONNX","Small v3 ONNX", "Medium v1 ONNX", "Medium v2 ONNX", "Medium v3 ONNX"
|
157 |
]
|
158 |
|
159 |
if 0 <= select_models < len(model_labels):
|
@@ -161,23 +172,15 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
161 |
else:
|
162 |
raise ValueError(f"select_models={select_models} must be 0-11")
|
163 |
|
164 |
-
# Enhanced logging for optimization status
|
165 |
optimization_status = "π MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "π¦ Standard PyTorch"
|
166 |
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
|
167 |
-
|
168 |
-
# Show performance info for ONNX models
|
169 |
-
if model_type == "ONNX" and hasattr(detector, 'get_performance_info'):
|
170 |
-
perf_info = detector.get_performance_info()
|
171 |
-
if 'providers' in perf_info:
|
172 |
-
print(f"Provider: {perf_info['providers'][0]}")
|
173 |
-
if 'optimization_level' in perf_info:
|
174 |
-
print(f"Graph optimizations: {perf_info['optimization_level']}")
|
175 |
|
176 |
return detector
|
177 |
|
178 |
|
179 |
# Initialize default detector with medium model (preferring ONNX for performance)
|
180 |
-
print("π Initializing API with optimized ONNX Runtime support...")
|
181 |
detector = load_detector(2, prefer_onnx=True)
|
182 |
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
|
183 |
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
|
@@ -196,16 +199,18 @@ app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
|
|
196 |
async def root():
|
197 |
"""Root endpoint with enhanced model info"""
|
198 |
return {
|
199 |
-
"message": "Car Damage Detection API with YOLOv11
|
200 |
-
"version": "1.
|
201 |
"optimizations": {
|
202 |
"onnx_runtime": "v1.19+ with opset 21 support",
|
|
|
|
|
203 |
"performance_features": [
|
204 |
"Graph optimizations (ALL level)",
|
205 |
-
"
|
206 |
-
"Memory
|
207 |
-
"
|
208 |
-
"
|
209 |
]
|
210 |
},
|
211 |
"model_options": {
|
@@ -223,7 +228,7 @@ async def root():
|
|
223 |
"endpoints": {
|
224 |
"/docs": "API documentation",
|
225 |
"/detect": "Single/Multi image detection",
|
226 |
-
"/compare": "Compare before/after images (6 pairs)",
|
227 |
"/uploads/{filename}": "Access saved visualization images",
|
228 |
"/health": "Health check",
|
229 |
"/model-info": "Get current model information",
|
@@ -238,7 +243,9 @@ async def health_check():
|
|
238 |
health_info = {
|
239 |
"status": "healthy",
|
240 |
"model": "YOLOv11",
|
241 |
-
"
|
|
|
|
|
242 |
}
|
243 |
|
244 |
if detector and hasattr(detector, 'get_performance_info'):
|
@@ -251,6 +258,31 @@ async def health_check():
|
|
251 |
return health_info
|
252 |
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
@app.post("/detect")
|
256 |
async def detect_single_image(
|
@@ -259,23 +291,14 @@ async def detect_single_image(
|
|
259 |
select_models: int = Form(2),
|
260 |
prefer_onnx: bool = Form(True)
|
261 |
):
|
262 |
-
"""
|
263 |
-
Multi-view detection with ONNX Runtime optimizations
|
264 |
-
Args:
|
265 |
-
file: Single image (backward compatibility)
|
266 |
-
files: Multiple images for multi-view detection
|
267 |
-
select_models: Model selection
|
268 |
-
- 0-4: PyTorch models (standard performance)
|
269 |
-
- 5-8: ONNX models (maximum optimizations)
|
270 |
-
prefer_onnx: Whether to prefer ONNX format (default: True for better performance)
|
271 |
-
"""
|
272 |
try:
|
273 |
# Validate select_models
|
274 |
if select_models not in list(range(0, 12)):
|
275 |
raise HTTPException(status_code=400,
|
276 |
-
detail="select_models must be 0-
|
277 |
|
278 |
-
# Load appropriate detector
|
279 |
current_detector = load_detector(select_models, prefer_onnx)
|
280 |
|
281 |
# Case 1: Single image (backward compatibility)
|
@@ -296,7 +319,6 @@ async def detect_single_image(
|
|
296 |
output_path = UPLOADS_DIR / filename
|
297 |
cv2.imwrite(str(output_path), visualized)
|
298 |
|
299 |
-
# Enhanced response with optimization info
|
300 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
301 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
302 |
|
@@ -311,52 +333,39 @@ async def detect_single_image(
|
|
311 |
},
|
312 |
"visualized_image_path": f"uploads/{filename}",
|
313 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
314 |
-
"filename": filename
|
315 |
-
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (6-11) for better performance"
|
316 |
})
|
317 |
|
318 |
-
# Case 2: Multiple images
|
319 |
-
elif files is not None
|
320 |
-
print(f"\nMulti-view detection with {len(files)} images")
|
321 |
-
|
322 |
-
images_list = []
|
323 |
detections_list = []
|
|
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
contents = await img_file.read()
|
328 |
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
329 |
image_np = np.array(image)
|
330 |
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
331 |
-
|
332 |
-
images_list.append(image_bgr)
|
333 |
detections = current_detector.detect(image_bgr)
|
334 |
detections_list.append(detections)
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
# DEDUPLICATION using ReID
|
339 |
-
print("\nPerforming cross-view deduplication...")
|
340 |
-
unique_damages = comparator.deduplicate_detections_across_views(
|
341 |
-
detections_list, images_list
|
342 |
-
)
|
343 |
|
344 |
# Create combined visualization
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
349 |
x_offset = 0
|
350 |
-
for img_idx, (image, detections) in enumerate(zip(images_list, detections_list)):
|
351 |
-
# Resize if needed
|
352 |
-
h, w = image.shape[:2]
|
353 |
-
if h != combined_height:
|
354 |
-
scale = combined_height / h
|
355 |
-
new_w = int(w * scale)
|
356 |
-
image = cv2.resize(image, (new_w, combined_height))
|
357 |
-
w = new_w
|
358 |
|
359 |
-
|
|
|
|
|
|
|
|
|
360 |
combined_img[:, x_offset:x_offset + w] = image
|
361 |
|
362 |
# Draw detections with unique IDs
|
@@ -395,16 +404,17 @@ async def detect_single_image(
|
|
395 |
output_path = UPLOADS_DIR / filename
|
396 |
cv2.imwrite(str(output_path), combined_img)
|
397 |
|
398 |
-
# Return results
|
399 |
total_detections = sum(len(d['boxes']) for d in detections_list)
|
400 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
401 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
402 |
|
403 |
return JSONResponse({
|
404 |
"status": "success",
|
405 |
-
"mode": "
|
406 |
"model_type": model_type,
|
407 |
"optimization_status": optimization_status,
|
|
|
408 |
"total_detections_all_views": total_detections,
|
409 |
"unique_damages_count": len(unique_damages),
|
410 |
"unique_damages": {
|
@@ -420,8 +430,7 @@ async def detect_single_image(
|
|
420 |
"visualized_image_path": f"uploads/{filename}",
|
421 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
422 |
"message": f"Detected {total_detections} damages across {len(files)} views, "
|
423 |
-
f"identified {len(unique_damages)} unique damages using ReID"
|
424 |
-
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (5-8) for better performance"
|
425 |
})
|
426 |
|
427 |
else:
|
@@ -431,6 +440,84 @@ async def detect_single_image(
|
|
431 |
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
|
432 |
|
433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
@app.post("/compare")
|
435 |
async def compare_vehicle_damages(
|
436 |
# Before delivery images (6 positions)
|
@@ -452,34 +539,24 @@ async def compare_vehicle_damages(
|
|
452 |
prefer_onnx: bool = Form(True)
|
453 |
):
|
454 |
"""
|
455 |
-
Enhanced comparison with
|
456 |
-
|
457 |
-
before_1-6: Before delivery images from 6 positions
|
458 |
-
after_1-6: After delivery images from 6 positions
|
459 |
-
select_models: Model selection (0-4=PyTorch, 5-8=ONNX optimized)
|
460 |
-
prefer_onnx: Whether to prefer ONNX format (default: True)
|
461 |
"""
|
462 |
try:
|
463 |
# Validate select_models
|
464 |
if select_models not in list(range(0, 12)):
|
465 |
raise HTTPException(status_code=400,
|
466 |
-
detail="select_models must be 0-
|
467 |
|
468 |
-
# Load appropriate detector
|
469 |
current_detector = load_detector(select_models, prefer_onnx)
|
470 |
|
471 |
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
|
472 |
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
# Collect all before/after images and detections
|
479 |
-
all_before_images = []
|
480 |
-
all_after_images = []
|
481 |
-
all_before_detections = []
|
482 |
-
all_after_detections = []
|
483 |
|
484 |
# Overall statistics
|
485 |
total_new_damages = 0
|
@@ -489,89 +566,72 @@ async def compare_vehicle_damages(
|
|
489 |
session_id = str(uuid.uuid4())[:8]
|
490 |
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
491 |
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
before_np = np.array(before_img)
|
501 |
-
after_np = np.array(after_img)
|
502 |
-
|
503 |
-
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
|
504 |
-
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
|
505 |
-
|
506 |
-
# Store for multi-view analysis
|
507 |
-
all_before_images.append(before_bgr)
|
508 |
-
all_after_images.append(after_bgr)
|
509 |
-
|
510 |
-
image_pairs.append((before_bgr, after_bgr))
|
511 |
-
|
512 |
-
# Detect damages
|
513 |
-
before_detections = current_detector.detect(before_bgr)
|
514 |
-
after_detections = current_detector.detect(after_bgr)
|
515 |
-
|
516 |
-
all_before_detections.append(before_detections)
|
517 |
-
all_after_detections.append(after_detections)
|
518 |
-
|
519 |
-
# Enhanced comparison with ReID
|
520 |
-
comparison = comparator.analyze_damage_status(
|
521 |
-
before_detections, after_detections,
|
522 |
-
before_bgr, after_bgr
|
523 |
-
)
|
524 |
-
|
525 |
-
# Update statistics
|
526 |
-
total_new_damages += len(comparison['new_damages'])
|
527 |
-
total_existing_damages += len(comparison['repaired_damages'])
|
528 |
-
total_matched_damages += len(comparison['matched_damages'])
|
529 |
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
position_results.append({
|
546 |
-
f"position_{i + 1}": {
|
547 |
-
"case": comparison['case'],
|
548 |
-
"message": comparison['message'],
|
549 |
-
"statistics": comparison['statistics'],
|
550 |
-
"new_damages": comparison['new_damages'],
|
551 |
-
"matched_damages": comparison['matched_damages'],
|
552 |
-
"repaired_damages": comparison['repaired_damages'],
|
553 |
-
"using_reid": comparison['statistics'].get('using_reid', True),
|
554 |
-
"visualization_path": f"uploads/{vis_filename}",
|
555 |
-
"visualization_url": vis_url,
|
556 |
-
"filename": vis_filename
|
557 |
-
}
|
558 |
-
})
|
559 |
|
560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
unique_before = comparator.deduplicate_detections_across_views(
|
562 |
all_before_detections, all_before_images
|
563 |
)
|
564 |
|
565 |
-
# Deduplicate AFTER damages across all 6 views
|
566 |
unique_after = comparator.deduplicate_detections_across_views(
|
567 |
all_after_detections, all_after_images
|
568 |
)
|
569 |
|
570 |
-
print(
|
571 |
-
|
|
|
572 |
|
573 |
# Determine overall case with deduplication
|
574 |
-
actual_new_damages = len(unique_after) - len(unique_before)
|
575 |
|
576 |
overall_case = "CASE_3_SUCCESS"
|
577 |
overall_message = "Successful delivery - No damage detected"
|
@@ -584,7 +644,7 @@ async def compare_vehicle_damages(
|
|
584 |
overall_message = "Existing damages from beginning β Delivery completed"
|
585 |
|
586 |
# Create summary grid
|
587 |
-
grid_results = [res[
|
588 |
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
|
589 |
|
590 |
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
|
@@ -595,7 +655,12 @@ async def compare_vehicle_damages(
|
|
595 |
|
596 |
timestamp = datetime.now().isoformat()
|
597 |
|
598 |
-
#
|
|
|
|
|
|
|
|
|
|
|
599 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
600 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
601 |
|
@@ -606,6 +671,8 @@ async def compare_vehicle_damages(
|
|
606 |
"model_type": model_type,
|
607 |
"optimization_status": optimization_status,
|
608 |
"reid_enabled": True,
|
|
|
|
|
609 |
"overall_result": {
|
610 |
"case": overall_case,
|
611 |
"message": overall_message,
|
@@ -615,10 +682,11 @@ async def compare_vehicle_damages(
|
|
615 |
"total_repaired_damages": int(total_existing_damages),
|
616 |
"unique_damages_before": int(len(unique_before)),
|
617 |
"unique_damages_after": int(len(unique_after)),
|
618 |
-
"actual_new_unique_damages": int(
|
619 |
}
|
620 |
},
|
621 |
"deduplication_info": {
|
|
|
622 |
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
|
623 |
"before_unique_damages": int(len(unique_before)),
|
624 |
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
|
@@ -635,14 +703,17 @@ async def compare_vehicle_damages(
|
|
635 |
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
|
636 |
else "Proceed with delivery completion"
|
637 |
},
|
638 |
-
"performance_note": "Using
|
639 |
})
|
640 |
|
641 |
except Exception as e:
|
|
|
|
|
|
|
|
|
642 |
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
|
643 |
|
644 |
|
645 |
-
|
646 |
if __name__ == "__main__":
|
647 |
import os
|
648 |
uvicorn.run(
|
@@ -651,4 +722,4 @@ if __name__ == "__main__":
|
|
651 |
port=int(os.environ.get("PORT", 7860)),
|
652 |
reload=False,
|
653 |
log_level="info"
|
654 |
-
)
|
|
|
1 |
import io
|
2 |
+
from typing import List, Dict
|
3 |
import uvicorn
|
4 |
import numpy as np
|
5 |
import uuid
|
6 |
from datetime import datetime
|
7 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
8 |
+
from fastapi.responses import JSONResponse
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from fastapi.staticfiles import StaticFiles
|
11 |
from PIL import Image
|
|
|
15 |
from src.comparison import DamageComparator
|
16 |
from src.visualization import DamageVisualizer
|
17 |
from pathlib import Path
|
18 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
19 |
+
import torch
|
20 |
+
import gc
|
21 |
|
22 |
app = FastAPI(
|
23 |
title="Car Damage Detection API",
|
24 |
+
description="YOLOv11-based car damage detection with DINOv2 ReID (Memory Optimized)",
|
25 |
+
version="1.3.0"
|
26 |
)
|
27 |
|
28 |
# Add CORS middleware
|
|
|
34 |
allow_headers=["*"],
|
35 |
)
|
36 |
|
37 |
+
# GLOBAL COMPONENTS - Load once at startup
|
38 |
detector = None
|
39 |
+
comparator = None
|
40 |
+
visualizer = None
|
41 |
|
42 |
# Model paths mapping - PT and ONNX versions
|
43 |
MODEL_PATHS = {
|
|
|
84 |
6: 11 # Medium v3 -> ONNX
|
85 |
}
|
86 |
|
|
|
87 |
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
|
88 |
"""
|
89 |
Enhanced model selection with performance optimization info
|
|
|
118 |
# No suitable file found
|
119 |
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
|
120 |
|
|
|
121 |
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
122 |
"""
|
123 |
+
Load detector with optimized ONNX Runtime v1.19 support
|
124 |
+
IMPORTANT: This loads GLOBAL instances that are shared across threads
|
|
|
|
|
|
|
125 |
"""
|
126 |
global detector, comparator, visualizer
|
127 |
|
|
|
142 |
with open(temp_config, 'w') as f:
|
143 |
yaml.dump(config, f, default_flow_style=False)
|
144 |
|
145 |
+
# Clear previous models from memory before loading new ones
|
146 |
+
if detector is not None:
|
147 |
+
del detector
|
148 |
+
if comparator is not None:
|
149 |
+
del comparator
|
150 |
+
if visualizer is not None:
|
151 |
+
del visualizer
|
152 |
+
|
153 |
+
# Force garbage collection
|
154 |
+
gc.collect()
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
torch.cuda.empty_cache()
|
157 |
+
|
158 |
+
# Load all components with new config
|
159 |
detector = YOLOv11Detector(config_path=temp_config)
|
160 |
comparator = DamageComparator(config_path=temp_config)
|
161 |
visualizer = DamageVisualizer(config_path=temp_config)
|
|
|
163 |
# Log model info with optimization status
|
164 |
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
|
165 |
model_labels = [
|
166 |
+
"Small v1", "Small v2", "Small v3", "Medium v1", "Medium v2", "Medium v3",
|
167 |
+
"Small v1 ONNX", "Small v2 ONNX", "Small v3 ONNX", "Medium v1 ONNX", "Medium v2 ONNX", "Medium v3 ONNX"
|
168 |
]
|
169 |
|
170 |
if 0 <= select_models < len(model_labels):
|
|
|
172 |
else:
|
173 |
raise ValueError(f"select_models={select_models} must be 0-11")
|
174 |
|
|
|
175 |
optimization_status = "π MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "π¦ Standard PyTorch"
|
176 |
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
|
177 |
+
print(f"β
DINOv2 ReID enabled for damage comparison")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
return detector
|
180 |
|
181 |
|
182 |
# Initialize default detector with medium model (preferring ONNX for performance)
|
183 |
+
print("π Initializing API with optimized ONNX Runtime and DINOv2 ReID support...")
|
184 |
detector = load_detector(2, prefer_onnx=True)
|
185 |
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
|
186 |
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
|
|
|
199 |
async def root():
|
200 |
"""Root endpoint with enhanced model info"""
|
201 |
return {
|
202 |
+
"message": "Car Damage Detection API with YOLOv11 + DINOv2 ReID (Memory Optimized)",
|
203 |
+
"version": "1.3.0",
|
204 |
"optimizations": {
|
205 |
"onnx_runtime": "v1.19+ with opset 21 support",
|
206 |
+
"reid_model": "DINOv2 (Meta) - Superior visual feature extraction",
|
207 |
+
"memory_management": "Global model loading with ThreadPoolExecutor",
|
208 |
"performance_features": [
|
209 |
"Graph optimizations (ALL level)",
|
210 |
+
"DINOv2 ReID for cross-view damage matching",
|
211 |
+
"Memory-efficient threading",
|
212 |
+
"torch.no_grad() context for inference",
|
213 |
+
"Automatic CUDA cache clearing"
|
214 |
]
|
215 |
},
|
216 |
"model_options": {
|
|
|
228 |
"endpoints": {
|
229 |
"/docs": "API documentation",
|
230 |
"/detect": "Single/Multi image detection",
|
231 |
+
"/compare": "Compare before/after images (6 pairs) with DINOv2 ReID",
|
232 |
"/uploads/{filename}": "Access saved visualization images",
|
233 |
"/health": "Health check",
|
234 |
"/model-info": "Get current model information",
|
|
|
243 |
health_info = {
|
244 |
"status": "healthy",
|
245 |
"model": "YOLOv11",
|
246 |
+
"reid": "DINOv2",
|
247 |
+
"backend": "ONNX/PyTorch",
|
248 |
+
"memory_optimization": "ThreadPoolExecutor with global models"
|
249 |
}
|
250 |
|
251 |
if detector and hasattr(detector, 'get_performance_info'):
|
|
|
258 |
return health_info
|
259 |
|
260 |
|
261 |
+
@app.get("/model-info")
|
262 |
+
async def get_model_info():
|
263 |
+
"""Get comprehensive information about currently loaded model"""
|
264 |
+
if detector is None:
|
265 |
+
return {"error": "No model loaded"}
|
266 |
+
|
267 |
+
model_path = detector.model_path
|
268 |
+
model_type = "ONNX" if model_path.endswith('.onnx') else "PyTorch"
|
269 |
+
|
270 |
+
info = {
|
271 |
+
"model_path": model_path,
|
272 |
+
"model_type": model_type,
|
273 |
+
"confidence_threshold": detector.confidence,
|
274 |
+
"iou_threshold": detector.iou_threshold,
|
275 |
+
"classes": detector.classes,
|
276 |
+
"reid_model": "DINOv2",
|
277 |
+
"optimization_status": "Optimized" if model_type == "ONNX" else "Standard"
|
278 |
+
}
|
279 |
+
|
280 |
+
if hasattr(detector, 'get_performance_info'):
|
281 |
+
perf_info = detector.get_performance_info()
|
282 |
+
info.update(perf_info)
|
283 |
+
|
284 |
+
return info
|
285 |
+
|
286 |
|
287 |
@app.post("/detect")
|
288 |
async def detect_single_image(
|
|
|
291 |
select_models: int = Form(2),
|
292 |
prefer_onnx: bool = Form(True)
|
293 |
):
|
294 |
+
"""Multi-view detection with ONNX Runtime optimizations and DINOv2 ReID"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
try:
|
296 |
# Validate select_models
|
297 |
if select_models not in list(range(0, 12)):
|
298 |
raise HTTPException(status_code=400,
|
299 |
+
detail="select_models must be 0-8 (0-4=PyTorch, 5-8=ONNX optimized)")
|
300 |
|
301 |
+
# Load appropriate detector (if different from current)
|
302 |
current_detector = load_detector(select_models, prefer_onnx)
|
303 |
|
304 |
# Case 1: Single image (backward compatibility)
|
|
|
319 |
output_path = UPLOADS_DIR / filename
|
320 |
cv2.imwrite(str(output_path), visualized)
|
321 |
|
|
|
322 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
323 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
324 |
|
|
|
333 |
},
|
334 |
"visualized_image_path": f"uploads/{filename}",
|
335 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
336 |
+
"filename": filename
|
|
|
337 |
})
|
338 |
|
339 |
+
# Case 2: Multiple images with DINOv2 deduplication
|
340 |
+
elif files is not None:
|
|
|
|
|
|
|
341 |
detections_list = []
|
342 |
+
images = []
|
343 |
|
344 |
+
for idx, f in enumerate(files):
|
345 |
+
contents = await f.read()
|
|
|
346 |
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
347 |
image_np = np.array(image)
|
348 |
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
349 |
+
images.append(image_bgr)
|
|
|
350 |
detections = current_detector.detect(image_bgr)
|
351 |
detections_list.append(detections)
|
352 |
|
353 |
+
# Deduplicate across views using DINOv2
|
354 |
+
unique_damages = comparator.deduplicate_detections_across_views(detections_list, images)
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
# Create combined visualization
|
357 |
+
heights = [img.shape[0] for img in images]
|
358 |
+
widths = [img.shape[1] for img in images]
|
359 |
+
max_height = max(heights)
|
360 |
+
total_width = sum(widths)
|
361 |
+
combined_img = np.zeros((max_height, total_width, 3), dtype=np.uint8)
|
362 |
x_offset = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
+
for img_idx, image in enumerate(images):
|
365 |
+
h, w = image.shape[:2]
|
366 |
+
if h != max_height:
|
367 |
+
image = cv2.resize(image, (w, max_height))
|
368 |
+
detections = detections_list[img_idx]
|
369 |
combined_img[:, x_offset:x_offset + w] = image
|
370 |
|
371 |
# Draw detections with unique IDs
|
|
|
404 |
output_path = UPLOADS_DIR / filename
|
405 |
cv2.imwrite(str(output_path), combined_img)
|
406 |
|
407 |
+
# Return results
|
408 |
total_detections = sum(len(d['boxes']) for d in detections_list)
|
409 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
410 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
411 |
|
412 |
return JSONResponse({
|
413 |
"status": "success",
|
414 |
+
"mode": "multi_view_with_dinov2_reid",
|
415 |
"model_type": model_type,
|
416 |
"optimization_status": optimization_status,
|
417 |
+
"reid_model": "DINOv2",
|
418 |
"total_detections_all_views": total_detections,
|
419 |
"unique_damages_count": len(unique_damages),
|
420 |
"unique_damages": {
|
|
|
430 |
"visualized_image_path": f"uploads/{filename}",
|
431 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
432 |
"message": f"Detected {total_detections} damages across {len(files)} views, "
|
433 |
+
f"identified {len(unique_damages)} unique damages using DINOv2 ReID"
|
|
|
434 |
})
|
435 |
|
436 |
else:
|
|
|
440 |
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
|
441 |
|
442 |
|
443 |
+
def process_single_position_threaded(
|
444 |
+
i: int,
|
445 |
+
before_contents: bytes,
|
446 |
+
after_contents: bytes,
|
447 |
+
timestamp_str: str,
|
448 |
+
session_id: str
|
449 |
+
) -> Dict:
|
450 |
+
"""
|
451 |
+
Process single position comparison using GLOBAL models (thread-safe)
|
452 |
+
No model loading here - uses global instances
|
453 |
+
"""
|
454 |
+
# Use GLOBAL instances - no loading
|
455 |
+
global detector, comparator, visualizer
|
456 |
+
|
457 |
+
# Preprocess images
|
458 |
+
before_img = Image.open(io.BytesIO(before_contents)).convert("RGB")
|
459 |
+
after_img = Image.open(io.BytesIO(after_contents)).convert("RGB")
|
460 |
+
before_np = np.array(before_img)
|
461 |
+
after_np = np.array(after_img)
|
462 |
+
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
|
463 |
+
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
|
464 |
+
|
465 |
+
# Detect using global detector
|
466 |
+
before_detections = detector.detect(before_bgr)
|
467 |
+
after_detections = detector.detect(after_bgr)
|
468 |
+
|
469 |
+
# Compare using global comparator with DINOv2 ReID
|
470 |
+
comparison = comparator.analyze_damage_status(
|
471 |
+
before_detections, after_detections,
|
472 |
+
before_bgr, after_bgr
|
473 |
+
)
|
474 |
+
|
475 |
+
# Visualize using global visualizer
|
476 |
+
vis_img = visualizer.create_comparison_visualization(
|
477 |
+
before_bgr, after_bgr,
|
478 |
+
before_detections, after_detections,
|
479 |
+
comparison
|
480 |
+
)
|
481 |
+
|
482 |
+
vis_filename = f"comparison_{timestamp_str}_{session_id}_pos{i + 1}.jpg"
|
483 |
+
vis_path = UPLOADS_DIR / vis_filename
|
484 |
+
cv2.imwrite(str(vis_path), vis_img)
|
485 |
+
vis_url = f"http://localhost:8000/uploads/{vis_filename}"
|
486 |
+
|
487 |
+
# Clear any GPU memory if used
|
488 |
+
if torch.cuda.is_available():
|
489 |
+
torch.cuda.empty_cache()
|
490 |
+
|
491 |
+
# Return result
|
492 |
+
return {
|
493 |
+
f"position_{i + 1}": {
|
494 |
+
"case": comparison['case'],
|
495 |
+
"message": comparison['message'],
|
496 |
+
"statistics": comparison['statistics'],
|
497 |
+
"new_damages": comparison['new_damages'],
|
498 |
+
"matched_damages": comparison['matched_damages'],
|
499 |
+
"repaired_damages": comparison['repaired_damages'],
|
500 |
+
"using_reid": comparison['statistics'].get('using_reid', True),
|
501 |
+
"reid_model": comparison['statistics'].get('reid_model', 'DINOv2'),
|
502 |
+
"visualization_path": f"uploads/{vis_filename}",
|
503 |
+
"visualization_url": vis_url,
|
504 |
+
"filename": vis_filename
|
505 |
+
},
|
506 |
+
"before_detections": {
|
507 |
+
"boxes": [np.array(box).tolist() for box in before_detections['boxes']],
|
508 |
+
"confidences": [float(c) for c in before_detections['confidences']],
|
509 |
+
"classes": before_detections['classes']
|
510 |
+
},
|
511 |
+
"after_detections": {
|
512 |
+
"boxes": [np.array(box).tolist() for box in after_detections['boxes']],
|
513 |
+
"confidences": [float(c) for c in after_detections['confidences']],
|
514 |
+
"classes": after_detections['classes']
|
515 |
+
},
|
516 |
+
"_before_bgr": before_bgr, # chα» dΓΉng nα»i bα»
|
517 |
+
"_after_bgr": after_bgr # chα» dΓΉng nα»i bα»
|
518 |
+
}
|
519 |
+
|
520 |
+
|
521 |
@app.post("/compare")
|
522 |
async def compare_vehicle_damages(
|
523 |
# Before delivery images (6 positions)
|
|
|
539 |
prefer_onnx: bool = Form(True)
|
540 |
):
|
541 |
"""
|
542 |
+
Enhanced comparison with DINOv2 ReID and Memory Optimization
|
543 |
+
Uses ThreadPoolExecutor with global models to avoid OOM
|
|
|
|
|
|
|
|
|
544 |
"""
|
545 |
try:
|
546 |
# Validate select_models
|
547 |
if select_models not in list(range(0, 12)):
|
548 |
raise HTTPException(status_code=400,
|
549 |
+
detail="select_models must be 0-10 (0-5=PyTorch, 6-11=ONNX optimized)")
|
550 |
|
551 |
+
# Load appropriate detector if different from current
|
552 |
current_detector = load_detector(select_models, prefer_onnx)
|
553 |
|
554 |
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
|
555 |
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
|
556 |
|
557 |
+
# Read contents first
|
558 |
+
before_contents_list = [await img.read() for img in before_images]
|
559 |
+
after_contents_list = [await img.read() for img in after_images]
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
|
561 |
# Overall statistics
|
562 |
total_new_damages = 0
|
|
|
566 |
session_id = str(uuid.uuid4())[:8]
|
567 |
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
568 |
|
569 |
+
position_results = []
|
570 |
+
all_visualizations = []
|
571 |
+
image_pairs = []
|
572 |
+
all_before_images = []
|
573 |
+
all_after_images = []
|
574 |
+
all_before_detections = []
|
575 |
+
all_after_detections = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
+
# Use ThreadPoolExecutor to share memory (avoid OOM)
|
578 |
+
print(f"π Processing {len(before_images)} image pairs using ThreadPoolExecutor...")
|
579 |
+
|
580 |
+
with ThreadPoolExecutor(max_workers=3) as executor: # Limit workers to avoid memory issues
|
581 |
+
futures = [
|
582 |
+
executor.submit(
|
583 |
+
process_single_position_threaded,
|
584 |
+
i,
|
585 |
+
before_contents_list[i],
|
586 |
+
after_contents_list[i],
|
587 |
+
timestamp_str,
|
588 |
+
session_id
|
589 |
+
)
|
590 |
+
for i in range(6)
|
591 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
|
593 |
+
for future in as_completed(futures):
|
594 |
+
result = future.result()
|
595 |
+
pos_key = list(result.keys())[0] # e.g., 'position_1'
|
596 |
+
position_results.append(result)
|
597 |
+
all_visualizations.append(result[pos_key]["visualization_url"])
|
598 |
+
|
599 |
+
# Collect for deduplication
|
600 |
+
image_pairs.append((result["_before_bgr"], result["_after_bgr"]))
|
601 |
+
all_before_images.append(result["_before_bgr"])
|
602 |
+
all_after_images.append(result["_after_bgr"])
|
603 |
+
result.pop("_before_bgr", None)
|
604 |
+
result.pop("_after_bgr", None)
|
605 |
+
|
606 |
+
all_before_detections.append(result["before_detections"])
|
607 |
+
all_after_detections.append(result["after_detections"])
|
608 |
+
|
609 |
+
# Update statistics
|
610 |
+
comparison = result[pos_key]
|
611 |
+
total_new_damages += len(comparison["new_damages"])
|
612 |
+
total_existing_damages += len(comparison["repaired_damages"])
|
613 |
+
total_matched_damages += len(comparison["matched_damages"])
|
614 |
+
|
615 |
+
# Sort position_results by position number
|
616 |
+
position_results.sort(key=lambda x: int(list(x.keys())[0].split('_')[1]))
|
617 |
+
|
618 |
+
# Deduplicate BEFORE damages across all 6 views using DINOv2
|
619 |
+
print("π Deduplicating damages across views using DINOv2...")
|
620 |
unique_before = comparator.deduplicate_detections_across_views(
|
621 |
all_before_detections, all_before_images
|
622 |
)
|
623 |
|
624 |
+
# Deduplicate AFTER damages across all 6 views using DINOv2
|
625 |
unique_after = comparator.deduplicate_detections_across_views(
|
626 |
all_after_detections, all_after_images
|
627 |
)
|
628 |
|
629 |
+
print(
|
630 |
+
f"β
Before: {sum(len(d['boxes']) for d in all_before_detections)} detections β {len(unique_before)} unique")
|
631 |
+
print(f"β
After: {sum(len(d['boxes']) for d in all_after_detections)} detections β {len(unique_after)} unique")
|
632 |
|
633 |
# Determine overall case with deduplication
|
634 |
+
actual_new_damages = max(0, len(unique_after) - len(unique_before))
|
635 |
|
636 |
overall_case = "CASE_3_SUCCESS"
|
637 |
overall_message = "Successful delivery - No damage detected"
|
|
|
644 |
overall_message = "Existing damages from beginning β Delivery completed"
|
645 |
|
646 |
# Create summary grid
|
647 |
+
grid_results = [res[list(res.keys())[0]] for res in position_results]
|
648 |
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
|
649 |
|
650 |
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
|
|
|
655 |
|
656 |
timestamp = datetime.now().isoformat()
|
657 |
|
658 |
+
# Clean up memory
|
659 |
+
gc.collect()
|
660 |
+
if torch.cuda.is_available():
|
661 |
+
torch.cuda.empty_cache()
|
662 |
+
|
663 |
+
# Enhanced response
|
664 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
665 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
666 |
|
|
|
671 |
"model_type": model_type,
|
672 |
"optimization_status": optimization_status,
|
673 |
"reid_enabled": True,
|
674 |
+
"reid_model": "DINOv2",
|
675 |
+
"memory_optimization": "ThreadPoolExecutor with global models",
|
676 |
"overall_result": {
|
677 |
"case": overall_case,
|
678 |
"message": overall_message,
|
|
|
682 |
"total_repaired_damages": int(total_existing_damages),
|
683 |
"unique_damages_before": int(len(unique_before)),
|
684 |
"unique_damages_after": int(len(unique_after)),
|
685 |
+
"actual_new_unique_damages": int(actual_new_damages)
|
686 |
}
|
687 |
},
|
688 |
"deduplication_info": {
|
689 |
+
"model": "DINOv2",
|
690 |
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
|
691 |
"before_unique_damages": int(len(unique_before)),
|
692 |
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
|
|
|
703 |
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
|
704 |
else "Proceed with delivery completion"
|
705 |
},
|
706 |
+
"performance_note": f"Using {model_type} + DINOv2 ReID with memory optimization"
|
707 |
})
|
708 |
|
709 |
except Exception as e:
|
710 |
+
# Clean up on error
|
711 |
+
gc.collect()
|
712 |
+
if torch.cuda.is_available():
|
713 |
+
torch.cuda.empty_cache()
|
714 |
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
|
715 |
|
716 |
|
|
|
717 |
if __name__ == "__main__":
|
718 |
import os
|
719 |
uvicorn.run(
|
|
|
722 |
port=int(os.environ.get("PORT", 7860)),
|
723 |
reload=False,
|
724 |
log_level="info"
|
725 |
+
)
|