Spaces:
Sleeping
Sleeping
Commit
Β·
e6535be
1
Parent(s):
6640d16
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
import io
|
| 2 |
-
from typing import List
|
| 3 |
import uvicorn
|
| 4 |
import numpy as np
|
| 5 |
import uuid
|
| 6 |
from datetime import datetime
|
| 7 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
| 8 |
-
from fastapi.responses import JSONResponse
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
from fastapi.staticfiles import StaticFiles
|
| 11 |
from PIL import Image
|
|
@@ -15,11 +15,14 @@ from src.detection import YOLOv11Detector
|
|
| 15 |
from src.comparison import DamageComparator
|
| 16 |
from src.visualization import DamageVisualizer
|
| 17 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
app = FastAPI(
|
| 20 |
title="Car Damage Detection API",
|
| 21 |
-
description="YOLOv11-based car damage detection
|
| 22 |
-
version="1.
|
| 23 |
)
|
| 24 |
|
| 25 |
# Add CORS middleware
|
|
@@ -31,10 +34,10 @@ app.add_middleware(
|
|
| 31 |
allow_headers=["*"],
|
| 32 |
)
|
| 33 |
|
| 34 |
-
#
|
| 35 |
detector = None
|
| 36 |
-
comparator =
|
| 37 |
-
visualizer =
|
| 38 |
|
| 39 |
# Model paths mapping - PT and ONNX versions
|
| 40 |
MODEL_PATHS = {
|
|
@@ -81,7 +84,6 @@ PT_TO_ONNX_MAPPING = {
|
|
| 81 |
6: 11 # Medium v3 -> ONNX
|
| 82 |
}
|
| 83 |
|
| 84 |
-
|
| 85 |
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
|
| 86 |
"""
|
| 87 |
Enhanced model selection with performance optimization info
|
|
@@ -116,14 +118,10 @@ def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int
|
|
| 116 |
# No suitable file found
|
| 117 |
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
|
| 118 |
|
| 119 |
-
|
| 120 |
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
| 121 |
"""
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
select_models: Model selection
|
| 125 |
-
|
| 126 |
-
prefer_onnx: Whether to prefer ONNX format for fallback
|
| 127 |
"""
|
| 128 |
global detector, comparator, visualizer
|
| 129 |
|
|
@@ -144,7 +142,20 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
| 144 |
with open(temp_config, 'w') as f:
|
| 145 |
yaml.dump(config, f, default_flow_style=False)
|
| 146 |
|
| 147 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
detector = YOLOv11Detector(config_path=temp_config)
|
| 149 |
comparator = DamageComparator(config_path=temp_config)
|
| 150 |
visualizer = DamageVisualizer(config_path=temp_config)
|
|
@@ -152,8 +163,8 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
| 152 |
# Log model info with optimization status
|
| 153 |
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
|
| 154 |
model_labels = [
|
| 155 |
-
"Small v1", "Small v2","Small v3", "Medium v1", "Medium v2", "Medium v3",
|
| 156 |
-
"Small v1 ONNX", "Small v2 ONNX","Small v3 ONNX", "Medium v1 ONNX", "Medium v2 ONNX", "Medium v3 ONNX"
|
| 157 |
]
|
| 158 |
|
| 159 |
if 0 <= select_models < len(model_labels):
|
|
@@ -161,23 +172,15 @@ def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
|
| 161 |
else:
|
| 162 |
raise ValueError(f"select_models={select_models} must be 0-11")
|
| 163 |
|
| 164 |
-
# Enhanced logging for optimization status
|
| 165 |
optimization_status = "π MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "π¦ Standard PyTorch"
|
| 166 |
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
|
| 167 |
-
|
| 168 |
-
# Show performance info for ONNX models
|
| 169 |
-
if model_type == "ONNX" and hasattr(detector, 'get_performance_info'):
|
| 170 |
-
perf_info = detector.get_performance_info()
|
| 171 |
-
if 'providers' in perf_info:
|
| 172 |
-
print(f"Provider: {perf_info['providers'][0]}")
|
| 173 |
-
if 'optimization_level' in perf_info:
|
| 174 |
-
print(f"Graph optimizations: {perf_info['optimization_level']}")
|
| 175 |
|
| 176 |
return detector
|
| 177 |
|
| 178 |
|
| 179 |
# Initialize default detector with medium model (preferring ONNX for performance)
|
| 180 |
-
print("π Initializing API with optimized ONNX Runtime support...")
|
| 181 |
detector = load_detector(2, prefer_onnx=True)
|
| 182 |
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
|
| 183 |
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
|
|
@@ -196,16 +199,18 @@ app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
|
|
| 196 |
async def root():
|
| 197 |
"""Root endpoint with enhanced model info"""
|
| 198 |
return {
|
| 199 |
-
"message": "Car Damage Detection API with YOLOv11
|
| 200 |
-
"version": "1.
|
| 201 |
"optimizations": {
|
| 202 |
"onnx_runtime": "v1.19+ with opset 21 support",
|
|
|
|
|
|
|
| 203 |
"performance_features": [
|
| 204 |
"Graph optimizations (ALL level)",
|
| 205 |
-
"
|
| 206 |
-
"Memory
|
| 207 |
-
"
|
| 208 |
-
"
|
| 209 |
]
|
| 210 |
},
|
| 211 |
"model_options": {
|
|
@@ -223,7 +228,7 @@ async def root():
|
|
| 223 |
"endpoints": {
|
| 224 |
"/docs": "API documentation",
|
| 225 |
"/detect": "Single/Multi image detection",
|
| 226 |
-
"/compare": "Compare before/after images (6 pairs)",
|
| 227 |
"/uploads/{filename}": "Access saved visualization images",
|
| 228 |
"/health": "Health check",
|
| 229 |
"/model-info": "Get current model information",
|
|
@@ -238,7 +243,9 @@ async def health_check():
|
|
| 238 |
health_info = {
|
| 239 |
"status": "healthy",
|
| 240 |
"model": "YOLOv11",
|
| 241 |
-
"
|
|
|
|
|
|
|
| 242 |
}
|
| 243 |
|
| 244 |
if detector and hasattr(detector, 'get_performance_info'):
|
|
@@ -251,6 +258,31 @@ async def health_check():
|
|
| 251 |
return health_info
|
| 252 |
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
@app.post("/detect")
|
| 256 |
async def detect_single_image(
|
|
@@ -259,23 +291,14 @@ async def detect_single_image(
|
|
| 259 |
select_models: int = Form(2),
|
| 260 |
prefer_onnx: bool = Form(True)
|
| 261 |
):
|
| 262 |
-
"""
|
| 263 |
-
Multi-view detection with ONNX Runtime optimizations
|
| 264 |
-
Args:
|
| 265 |
-
file: Single image (backward compatibility)
|
| 266 |
-
files: Multiple images for multi-view detection
|
| 267 |
-
select_models: Model selection
|
| 268 |
-
- 0-4: PyTorch models (standard performance)
|
| 269 |
-
- 5-8: ONNX models (maximum optimizations)
|
| 270 |
-
prefer_onnx: Whether to prefer ONNX format (default: True for better performance)
|
| 271 |
-
"""
|
| 272 |
try:
|
| 273 |
# Validate select_models
|
| 274 |
if select_models not in list(range(0, 12)):
|
| 275 |
raise HTTPException(status_code=400,
|
| 276 |
-
detail="select_models must be 0-
|
| 277 |
|
| 278 |
-
# Load appropriate detector
|
| 279 |
current_detector = load_detector(select_models, prefer_onnx)
|
| 280 |
|
| 281 |
# Case 1: Single image (backward compatibility)
|
|
@@ -296,7 +319,6 @@ async def detect_single_image(
|
|
| 296 |
output_path = UPLOADS_DIR / filename
|
| 297 |
cv2.imwrite(str(output_path), visualized)
|
| 298 |
|
| 299 |
-
# Enhanced response with optimization info
|
| 300 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 301 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 302 |
|
|
@@ -311,52 +333,39 @@ async def detect_single_image(
|
|
| 311 |
},
|
| 312 |
"visualized_image_path": f"uploads/{filename}",
|
| 313 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
| 314 |
-
"filename": filename
|
| 315 |
-
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (6-11) for better performance"
|
| 316 |
})
|
| 317 |
|
| 318 |
-
# Case 2: Multiple images
|
| 319 |
-
elif files is not None
|
| 320 |
-
print(f"\nMulti-view detection with {len(files)} images")
|
| 321 |
-
|
| 322 |
-
images_list = []
|
| 323 |
detections_list = []
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
contents = await img_file.read()
|
| 328 |
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 329 |
image_np = np.array(image)
|
| 330 |
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 331 |
-
|
| 332 |
-
images_list.append(image_bgr)
|
| 333 |
detections = current_detector.detect(image_bgr)
|
| 334 |
detections_list.append(detections)
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
# DEDUPLICATION using ReID
|
| 339 |
-
print("\nPerforming cross-view deduplication...")
|
| 340 |
-
unique_damages = comparator.deduplicate_detections_across_views(
|
| 341 |
-
detections_list, images_list
|
| 342 |
-
)
|
| 343 |
|
| 344 |
# Create combined visualization
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
| 349 |
x_offset = 0
|
| 350 |
-
for img_idx, (image, detections) in enumerate(zip(images_list, detections_list)):
|
| 351 |
-
# Resize if needed
|
| 352 |
-
h, w = image.shape[:2]
|
| 353 |
-
if h != combined_height:
|
| 354 |
-
scale = combined_height / h
|
| 355 |
-
new_w = int(w * scale)
|
| 356 |
-
image = cv2.resize(image, (new_w, combined_height))
|
| 357 |
-
w = new_w
|
| 358 |
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
combined_img[:, x_offset:x_offset + w] = image
|
| 361 |
|
| 362 |
# Draw detections with unique IDs
|
|
@@ -395,16 +404,17 @@ async def detect_single_image(
|
|
| 395 |
output_path = UPLOADS_DIR / filename
|
| 396 |
cv2.imwrite(str(output_path), combined_img)
|
| 397 |
|
| 398 |
-
# Return results
|
| 399 |
total_detections = sum(len(d['boxes']) for d in detections_list)
|
| 400 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 401 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 402 |
|
| 403 |
return JSONResponse({
|
| 404 |
"status": "success",
|
| 405 |
-
"mode": "
|
| 406 |
"model_type": model_type,
|
| 407 |
"optimization_status": optimization_status,
|
|
|
|
| 408 |
"total_detections_all_views": total_detections,
|
| 409 |
"unique_damages_count": len(unique_damages),
|
| 410 |
"unique_damages": {
|
|
@@ -420,8 +430,7 @@ async def detect_single_image(
|
|
| 420 |
"visualized_image_path": f"uploads/{filename}",
|
| 421 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
| 422 |
"message": f"Detected {total_detections} damages across {len(files)} views, "
|
| 423 |
-
f"identified {len(unique_damages)} unique damages using ReID"
|
| 424 |
-
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (5-8) for better performance"
|
| 425 |
})
|
| 426 |
|
| 427 |
else:
|
|
@@ -431,6 +440,84 @@ async def detect_single_image(
|
|
| 431 |
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
|
| 432 |
|
| 433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
@app.post("/compare")
|
| 435 |
async def compare_vehicle_damages(
|
| 436 |
# Before delivery images (6 positions)
|
|
@@ -452,34 +539,24 @@ async def compare_vehicle_damages(
|
|
| 452 |
prefer_onnx: bool = Form(True)
|
| 453 |
):
|
| 454 |
"""
|
| 455 |
-
Enhanced comparison with
|
| 456 |
-
|
| 457 |
-
before_1-6: Before delivery images from 6 positions
|
| 458 |
-
after_1-6: After delivery images from 6 positions
|
| 459 |
-
select_models: Model selection (0-4=PyTorch, 5-8=ONNX optimized)
|
| 460 |
-
prefer_onnx: Whether to prefer ONNX format (default: True)
|
| 461 |
"""
|
| 462 |
try:
|
| 463 |
# Validate select_models
|
| 464 |
if select_models not in list(range(0, 12)):
|
| 465 |
raise HTTPException(status_code=400,
|
| 466 |
-
detail="select_models must be 0-
|
| 467 |
|
| 468 |
-
# Load appropriate detector
|
| 469 |
current_detector = load_detector(select_models, prefer_onnx)
|
| 470 |
|
| 471 |
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
|
| 472 |
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
|
| 473 |
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
# Collect all before/after images and detections
|
| 479 |
-
all_before_images = []
|
| 480 |
-
all_after_images = []
|
| 481 |
-
all_before_detections = []
|
| 482 |
-
all_after_detections = []
|
| 483 |
|
| 484 |
# Overall statistics
|
| 485 |
total_new_damages = 0
|
|
@@ -489,89 +566,72 @@ async def compare_vehicle_damages(
|
|
| 489 |
session_id = str(uuid.uuid4())[:8]
|
| 490 |
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 491 |
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
before_np = np.array(before_img)
|
| 501 |
-
after_np = np.array(after_img)
|
| 502 |
-
|
| 503 |
-
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
|
| 504 |
-
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
|
| 505 |
-
|
| 506 |
-
# Store for multi-view analysis
|
| 507 |
-
all_before_images.append(before_bgr)
|
| 508 |
-
all_after_images.append(after_bgr)
|
| 509 |
-
|
| 510 |
-
image_pairs.append((before_bgr, after_bgr))
|
| 511 |
-
|
| 512 |
-
# Detect damages
|
| 513 |
-
before_detections = current_detector.detect(before_bgr)
|
| 514 |
-
after_detections = current_detector.detect(after_bgr)
|
| 515 |
-
|
| 516 |
-
all_before_detections.append(before_detections)
|
| 517 |
-
all_after_detections.append(after_detections)
|
| 518 |
-
|
| 519 |
-
# Enhanced comparison with ReID
|
| 520 |
-
comparison = comparator.analyze_damage_status(
|
| 521 |
-
before_detections, after_detections,
|
| 522 |
-
before_bgr, after_bgr
|
| 523 |
-
)
|
| 524 |
-
|
| 525 |
-
# Update statistics
|
| 526 |
-
total_new_damages += len(comparison['new_damages'])
|
| 527 |
-
total_existing_damages += len(comparison['repaired_damages'])
|
| 528 |
-
total_matched_damages += len(comparison['matched_damages'])
|
| 529 |
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
position_results.append({
|
| 546 |
-
f"position_{i + 1}": {
|
| 547 |
-
"case": comparison['case'],
|
| 548 |
-
"message": comparison['message'],
|
| 549 |
-
"statistics": comparison['statistics'],
|
| 550 |
-
"new_damages": comparison['new_damages'],
|
| 551 |
-
"matched_damages": comparison['matched_damages'],
|
| 552 |
-
"repaired_damages": comparison['repaired_damages'],
|
| 553 |
-
"using_reid": comparison['statistics'].get('using_reid', True),
|
| 554 |
-
"visualization_path": f"uploads/{vis_filename}",
|
| 555 |
-
"visualization_url": vis_url,
|
| 556 |
-
"filename": vis_filename
|
| 557 |
-
}
|
| 558 |
-
})
|
| 559 |
|
| 560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
unique_before = comparator.deduplicate_detections_across_views(
|
| 562 |
all_before_detections, all_before_images
|
| 563 |
)
|
| 564 |
|
| 565 |
-
# Deduplicate AFTER damages across all 6 views
|
| 566 |
unique_after = comparator.deduplicate_detections_across_views(
|
| 567 |
all_after_detections, all_after_images
|
| 568 |
)
|
| 569 |
|
| 570 |
-
print(
|
| 571 |
-
|
|
|
|
| 572 |
|
| 573 |
# Determine overall case with deduplication
|
| 574 |
-
actual_new_damages = len(unique_after) - len(unique_before)
|
| 575 |
|
| 576 |
overall_case = "CASE_3_SUCCESS"
|
| 577 |
overall_message = "Successful delivery - No damage detected"
|
|
@@ -584,7 +644,7 @@ async def compare_vehicle_damages(
|
|
| 584 |
overall_message = "Existing damages from beginning β Delivery completed"
|
| 585 |
|
| 586 |
# Create summary grid
|
| 587 |
-
grid_results = [res[
|
| 588 |
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
|
| 589 |
|
| 590 |
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
|
|
@@ -595,7 +655,12 @@ async def compare_vehicle_damages(
|
|
| 595 |
|
| 596 |
timestamp = datetime.now().isoformat()
|
| 597 |
|
| 598 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 600 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 601 |
|
|
@@ -606,6 +671,8 @@ async def compare_vehicle_damages(
|
|
| 606 |
"model_type": model_type,
|
| 607 |
"optimization_status": optimization_status,
|
| 608 |
"reid_enabled": True,
|
|
|
|
|
|
|
| 609 |
"overall_result": {
|
| 610 |
"case": overall_case,
|
| 611 |
"message": overall_message,
|
|
@@ -615,10 +682,11 @@ async def compare_vehicle_damages(
|
|
| 615 |
"total_repaired_damages": int(total_existing_damages),
|
| 616 |
"unique_damages_before": int(len(unique_before)),
|
| 617 |
"unique_damages_after": int(len(unique_after)),
|
| 618 |
-
"actual_new_unique_damages": int(
|
| 619 |
}
|
| 620 |
},
|
| 621 |
"deduplication_info": {
|
|
|
|
| 622 |
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
|
| 623 |
"before_unique_damages": int(len(unique_before)),
|
| 624 |
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
|
|
@@ -635,14 +703,17 @@ async def compare_vehicle_damages(
|
|
| 635 |
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
|
| 636 |
else "Proceed with delivery completion"
|
| 637 |
},
|
| 638 |
-
"performance_note": "Using
|
| 639 |
})
|
| 640 |
|
| 641 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
|
| 643 |
|
| 644 |
|
| 645 |
-
|
| 646 |
if __name__ == "__main__":
|
| 647 |
import os
|
| 648 |
uvicorn.run(
|
|
@@ -651,4 +722,4 @@ if __name__ == "__main__":
|
|
| 651 |
port=int(os.environ.get("PORT", 7860)),
|
| 652 |
reload=False,
|
| 653 |
log_level="info"
|
| 654 |
-
)
|
|
|
|
| 1 |
import io
|
| 2 |
+
from typing import List, Dict
|
| 3 |
import uvicorn
|
| 4 |
import numpy as np
|
| 5 |
import uuid
|
| 6 |
from datetime import datetime
|
| 7 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
|
| 8 |
+
from fastapi.responses import JSONResponse
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
from fastapi.staticfiles import StaticFiles
|
| 11 |
from PIL import Image
|
|
|
|
| 15 |
from src.comparison import DamageComparator
|
| 16 |
from src.visualization import DamageVisualizer
|
| 17 |
from pathlib import Path
|
| 18 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 19 |
+
import torch
|
| 20 |
+
import gc
|
| 21 |
|
| 22 |
app = FastAPI(
|
| 23 |
title="Car Damage Detection API",
|
| 24 |
+
description="YOLOv11-based car damage detection with DINOv2 ReID (Memory Optimized)",
|
| 25 |
+
version="1.3.0"
|
| 26 |
)
|
| 27 |
|
| 28 |
# Add CORS middleware
|
|
|
|
| 34 |
allow_headers=["*"],
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# GLOBAL COMPONENTS - Load once at startup
|
| 38 |
detector = None
|
| 39 |
+
comparator = None
|
| 40 |
+
visualizer = None
|
| 41 |
|
| 42 |
# Model paths mapping - PT and ONNX versions
|
| 43 |
MODEL_PATHS = {
|
|
|
|
| 84 |
6: 11 # Medium v3 -> ONNX
|
| 85 |
}
|
| 86 |
|
|
|
|
| 87 |
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
|
| 88 |
"""
|
| 89 |
Enhanced model selection with performance optimization info
|
|
|
|
| 118 |
# No suitable file found
|
| 119 |
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
|
| 120 |
|
|
|
|
| 121 |
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
|
| 122 |
"""
|
| 123 |
+
Load detector with optimized ONNX Runtime v1.19 support
|
| 124 |
+
IMPORTANT: This loads GLOBAL instances that are shared across threads
|
|
|
|
|
|
|
|
|
|
| 125 |
"""
|
| 126 |
global detector, comparator, visualizer
|
| 127 |
|
|
|
|
| 142 |
with open(temp_config, 'w') as f:
|
| 143 |
yaml.dump(config, f, default_flow_style=False)
|
| 144 |
|
| 145 |
+
# Clear previous models from memory before loading new ones
|
| 146 |
+
if detector is not None:
|
| 147 |
+
del detector
|
| 148 |
+
if comparator is not None:
|
| 149 |
+
del comparator
|
| 150 |
+
if visualizer is not None:
|
| 151 |
+
del visualizer
|
| 152 |
+
|
| 153 |
+
# Force garbage collection
|
| 154 |
+
gc.collect()
|
| 155 |
+
if torch.cuda.is_available():
|
| 156 |
+
torch.cuda.empty_cache()
|
| 157 |
+
|
| 158 |
+
# Load all components with new config
|
| 159 |
detector = YOLOv11Detector(config_path=temp_config)
|
| 160 |
comparator = DamageComparator(config_path=temp_config)
|
| 161 |
visualizer = DamageVisualizer(config_path=temp_config)
|
|
|
|
| 163 |
# Log model info with optimization status
|
| 164 |
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
|
| 165 |
model_labels = [
|
| 166 |
+
"Small v1", "Small v2", "Small v3", "Medium v1", "Medium v2", "Medium v3",
|
| 167 |
+
"Small v1 ONNX", "Small v2 ONNX", "Small v3 ONNX", "Medium v1 ONNX", "Medium v2 ONNX", "Medium v3 ONNX"
|
| 168 |
]
|
| 169 |
|
| 170 |
if 0 <= select_models < len(model_labels):
|
|
|
|
| 172 |
else:
|
| 173 |
raise ValueError(f"select_models={select_models} must be 0-11")
|
| 174 |
|
|
|
|
| 175 |
optimization_status = "π MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "π¦ Standard PyTorch"
|
| 176 |
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
|
| 177 |
+
print(f"β
DINOv2 ReID enabled for damage comparison")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
return detector
|
| 180 |
|
| 181 |
|
| 182 |
# Initialize default detector with medium model (preferring ONNX for performance)
|
| 183 |
+
print("π Initializing API with optimized ONNX Runtime and DINOv2 ReID support...")
|
| 184 |
detector = load_detector(2, prefer_onnx=True)
|
| 185 |
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
|
| 186 |
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
|
|
|
|
| 199 |
async def root():
|
| 200 |
"""Root endpoint with enhanced model info"""
|
| 201 |
return {
|
| 202 |
+
"message": "Car Damage Detection API with YOLOv11 + DINOv2 ReID (Memory Optimized)",
|
| 203 |
+
"version": "1.3.0",
|
| 204 |
"optimizations": {
|
| 205 |
"onnx_runtime": "v1.19+ with opset 21 support",
|
| 206 |
+
"reid_model": "DINOv2 (Meta) - Superior visual feature extraction",
|
| 207 |
+
"memory_management": "Global model loading with ThreadPoolExecutor",
|
| 208 |
"performance_features": [
|
| 209 |
"Graph optimizations (ALL level)",
|
| 210 |
+
"DINOv2 ReID for cross-view damage matching",
|
| 211 |
+
"Memory-efficient threading",
|
| 212 |
+
"torch.no_grad() context for inference",
|
| 213 |
+
"Automatic CUDA cache clearing"
|
| 214 |
]
|
| 215 |
},
|
| 216 |
"model_options": {
|
|
|
|
| 228 |
"endpoints": {
|
| 229 |
"/docs": "API documentation",
|
| 230 |
"/detect": "Single/Multi image detection",
|
| 231 |
+
"/compare": "Compare before/after images (6 pairs) with DINOv2 ReID",
|
| 232 |
"/uploads/{filename}": "Access saved visualization images",
|
| 233 |
"/health": "Health check",
|
| 234 |
"/model-info": "Get current model information",
|
|
|
|
| 243 |
health_info = {
|
| 244 |
"status": "healthy",
|
| 245 |
"model": "YOLOv11",
|
| 246 |
+
"reid": "DINOv2",
|
| 247 |
+
"backend": "ONNX/PyTorch",
|
| 248 |
+
"memory_optimization": "ThreadPoolExecutor with global models"
|
| 249 |
}
|
| 250 |
|
| 251 |
if detector and hasattr(detector, 'get_performance_info'):
|
|
|
|
| 258 |
return health_info
|
| 259 |
|
| 260 |
|
| 261 |
+
@app.get("/model-info")
|
| 262 |
+
async def get_model_info():
|
| 263 |
+
"""Get comprehensive information about currently loaded model"""
|
| 264 |
+
if detector is None:
|
| 265 |
+
return {"error": "No model loaded"}
|
| 266 |
+
|
| 267 |
+
model_path = detector.model_path
|
| 268 |
+
model_type = "ONNX" if model_path.endswith('.onnx') else "PyTorch"
|
| 269 |
+
|
| 270 |
+
info = {
|
| 271 |
+
"model_path": model_path,
|
| 272 |
+
"model_type": model_type,
|
| 273 |
+
"confidence_threshold": detector.confidence,
|
| 274 |
+
"iou_threshold": detector.iou_threshold,
|
| 275 |
+
"classes": detector.classes,
|
| 276 |
+
"reid_model": "DINOv2",
|
| 277 |
+
"optimization_status": "Optimized" if model_type == "ONNX" else "Standard"
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
if hasattr(detector, 'get_performance_info'):
|
| 281 |
+
perf_info = detector.get_performance_info()
|
| 282 |
+
info.update(perf_info)
|
| 283 |
+
|
| 284 |
+
return info
|
| 285 |
+
|
| 286 |
|
| 287 |
@app.post("/detect")
|
| 288 |
async def detect_single_image(
|
|
|
|
| 291 |
select_models: int = Form(2),
|
| 292 |
prefer_onnx: bool = Form(True)
|
| 293 |
):
|
| 294 |
+
"""Multi-view detection with ONNX Runtime optimizations and DINOv2 ReID"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
try:
|
| 296 |
# Validate select_models
|
| 297 |
if select_models not in list(range(0, 12)):
|
| 298 |
raise HTTPException(status_code=400,
|
| 299 |
+
detail="select_models must be 0-8 (0-4=PyTorch, 5-8=ONNX optimized)")
|
| 300 |
|
| 301 |
+
# Load appropriate detector (if different from current)
|
| 302 |
current_detector = load_detector(select_models, prefer_onnx)
|
| 303 |
|
| 304 |
# Case 1: Single image (backward compatibility)
|
|
|
|
| 319 |
output_path = UPLOADS_DIR / filename
|
| 320 |
cv2.imwrite(str(output_path), visualized)
|
| 321 |
|
|
|
|
| 322 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 323 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 324 |
|
|
|
|
| 333 |
},
|
| 334 |
"visualized_image_path": f"uploads/{filename}",
|
| 335 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
| 336 |
+
"filename": filename
|
|
|
|
| 337 |
})
|
| 338 |
|
| 339 |
+
# Case 2: Multiple images with DINOv2 deduplication
|
| 340 |
+
elif files is not None:
|
|
|
|
|
|
|
|
|
|
| 341 |
detections_list = []
|
| 342 |
+
images = []
|
| 343 |
|
| 344 |
+
for idx, f in enumerate(files):
|
| 345 |
+
contents = await f.read()
|
|
|
|
| 346 |
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 347 |
image_np = np.array(image)
|
| 348 |
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 349 |
+
images.append(image_bgr)
|
|
|
|
| 350 |
detections = current_detector.detect(image_bgr)
|
| 351 |
detections_list.append(detections)
|
| 352 |
|
| 353 |
+
# Deduplicate across views using DINOv2
|
| 354 |
+
unique_damages = comparator.deduplicate_detections_across_views(detections_list, images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
# Create combined visualization
|
| 357 |
+
heights = [img.shape[0] for img in images]
|
| 358 |
+
widths = [img.shape[1] for img in images]
|
| 359 |
+
max_height = max(heights)
|
| 360 |
+
total_width = sum(widths)
|
| 361 |
+
combined_img = np.zeros((max_height, total_width, 3), dtype=np.uint8)
|
| 362 |
x_offset = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
+
for img_idx, image in enumerate(images):
|
| 365 |
+
h, w = image.shape[:2]
|
| 366 |
+
if h != max_height:
|
| 367 |
+
image = cv2.resize(image, (w, max_height))
|
| 368 |
+
detections = detections_list[img_idx]
|
| 369 |
combined_img[:, x_offset:x_offset + w] = image
|
| 370 |
|
| 371 |
# Draw detections with unique IDs
|
|
|
|
| 404 |
output_path = UPLOADS_DIR / filename
|
| 405 |
cv2.imwrite(str(output_path), combined_img)
|
| 406 |
|
| 407 |
+
# Return results
|
| 408 |
total_detections = sum(len(d['boxes']) for d in detections_list)
|
| 409 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 410 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 411 |
|
| 412 |
return JSONResponse({
|
| 413 |
"status": "success",
|
| 414 |
+
"mode": "multi_view_with_dinov2_reid",
|
| 415 |
"model_type": model_type,
|
| 416 |
"optimization_status": optimization_status,
|
| 417 |
+
"reid_model": "DINOv2",
|
| 418 |
"total_detections_all_views": total_detections,
|
| 419 |
"unique_damages_count": len(unique_damages),
|
| 420 |
"unique_damages": {
|
|
|
|
| 430 |
"visualized_image_path": f"uploads/{filename}",
|
| 431 |
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
|
| 432 |
"message": f"Detected {total_detections} damages across {len(files)} views, "
|
| 433 |
+
f"identified {len(unique_damages)} unique damages using DINOv2 ReID"
|
|
|
|
| 434 |
})
|
| 435 |
|
| 436 |
else:
|
|
|
|
| 440 |
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
|
| 441 |
|
| 442 |
|
| 443 |
+
def process_single_position_threaded(
|
| 444 |
+
i: int,
|
| 445 |
+
before_contents: bytes,
|
| 446 |
+
after_contents: bytes,
|
| 447 |
+
timestamp_str: str,
|
| 448 |
+
session_id: str
|
| 449 |
+
) -> Dict:
|
| 450 |
+
"""
|
| 451 |
+
Process single position comparison using GLOBAL models (thread-safe)
|
| 452 |
+
No model loading here - uses global instances
|
| 453 |
+
"""
|
| 454 |
+
# Use GLOBAL instances - no loading
|
| 455 |
+
global detector, comparator, visualizer
|
| 456 |
+
|
| 457 |
+
# Preprocess images
|
| 458 |
+
before_img = Image.open(io.BytesIO(before_contents)).convert("RGB")
|
| 459 |
+
after_img = Image.open(io.BytesIO(after_contents)).convert("RGB")
|
| 460 |
+
before_np = np.array(before_img)
|
| 461 |
+
after_np = np.array(after_img)
|
| 462 |
+
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
|
| 463 |
+
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
|
| 464 |
+
|
| 465 |
+
# Detect using global detector
|
| 466 |
+
before_detections = detector.detect(before_bgr)
|
| 467 |
+
after_detections = detector.detect(after_bgr)
|
| 468 |
+
|
| 469 |
+
# Compare using global comparator with DINOv2 ReID
|
| 470 |
+
comparison = comparator.analyze_damage_status(
|
| 471 |
+
before_detections, after_detections,
|
| 472 |
+
before_bgr, after_bgr
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
# Visualize using global visualizer
|
| 476 |
+
vis_img = visualizer.create_comparison_visualization(
|
| 477 |
+
before_bgr, after_bgr,
|
| 478 |
+
before_detections, after_detections,
|
| 479 |
+
comparison
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
vis_filename = f"comparison_{timestamp_str}_{session_id}_pos{i + 1}.jpg"
|
| 483 |
+
vis_path = UPLOADS_DIR / vis_filename
|
| 484 |
+
cv2.imwrite(str(vis_path), vis_img)
|
| 485 |
+
vis_url = f"http://localhost:8000/uploads/{vis_filename}"
|
| 486 |
+
|
| 487 |
+
# Clear any GPU memory if used
|
| 488 |
+
if torch.cuda.is_available():
|
| 489 |
+
torch.cuda.empty_cache()
|
| 490 |
+
|
| 491 |
+
# Return result
|
| 492 |
+
return {
|
| 493 |
+
f"position_{i + 1}": {
|
| 494 |
+
"case": comparison['case'],
|
| 495 |
+
"message": comparison['message'],
|
| 496 |
+
"statistics": comparison['statistics'],
|
| 497 |
+
"new_damages": comparison['new_damages'],
|
| 498 |
+
"matched_damages": comparison['matched_damages'],
|
| 499 |
+
"repaired_damages": comparison['repaired_damages'],
|
| 500 |
+
"using_reid": comparison['statistics'].get('using_reid', True),
|
| 501 |
+
"reid_model": comparison['statistics'].get('reid_model', 'DINOv2'),
|
| 502 |
+
"visualization_path": f"uploads/{vis_filename}",
|
| 503 |
+
"visualization_url": vis_url,
|
| 504 |
+
"filename": vis_filename
|
| 505 |
+
},
|
| 506 |
+
"before_detections": {
|
| 507 |
+
"boxes": [np.array(box).tolist() for box in before_detections['boxes']],
|
| 508 |
+
"confidences": [float(c) for c in before_detections['confidences']],
|
| 509 |
+
"classes": before_detections['classes']
|
| 510 |
+
},
|
| 511 |
+
"after_detections": {
|
| 512 |
+
"boxes": [np.array(box).tolist() for box in after_detections['boxes']],
|
| 513 |
+
"confidences": [float(c) for c in after_detections['confidences']],
|
| 514 |
+
"classes": after_detections['classes']
|
| 515 |
+
},
|
| 516 |
+
"_before_bgr": before_bgr, # chα» dΓΉng nα»i bα»
|
| 517 |
+
"_after_bgr": after_bgr # chα» dΓΉng nα»i bα»
|
| 518 |
+
}
|
| 519 |
+
|
| 520 |
+
|
| 521 |
@app.post("/compare")
|
| 522 |
async def compare_vehicle_damages(
|
| 523 |
# Before delivery images (6 positions)
|
|
|
|
| 539 |
prefer_onnx: bool = Form(True)
|
| 540 |
):
|
| 541 |
"""
|
| 542 |
+
Enhanced comparison with DINOv2 ReID and Memory Optimization
|
| 543 |
+
Uses ThreadPoolExecutor with global models to avoid OOM
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
"""
|
| 545 |
try:
|
| 546 |
# Validate select_models
|
| 547 |
if select_models not in list(range(0, 12)):
|
| 548 |
raise HTTPException(status_code=400,
|
| 549 |
+
detail="select_models must be 0-10 (0-5=PyTorch, 6-11=ONNX optimized)")
|
| 550 |
|
| 551 |
+
# Load appropriate detector if different from current
|
| 552 |
current_detector = load_detector(select_models, prefer_onnx)
|
| 553 |
|
| 554 |
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
|
| 555 |
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
|
| 556 |
|
| 557 |
+
# Read contents first
|
| 558 |
+
before_contents_list = [await img.read() for img in before_images]
|
| 559 |
+
after_contents_list = [await img.read() for img in after_images]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
# Overall statistics
|
| 562 |
total_new_damages = 0
|
|
|
|
| 566 |
session_id = str(uuid.uuid4())[:8]
|
| 567 |
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 568 |
|
| 569 |
+
position_results = []
|
| 570 |
+
all_visualizations = []
|
| 571 |
+
image_pairs = []
|
| 572 |
+
all_before_images = []
|
| 573 |
+
all_after_images = []
|
| 574 |
+
all_before_detections = []
|
| 575 |
+
all_after_detections = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
+
# Use ThreadPoolExecutor to share memory (avoid OOM)
|
| 578 |
+
print(f"π Processing {len(before_images)} image pairs using ThreadPoolExecutor...")
|
| 579 |
+
|
| 580 |
+
with ThreadPoolExecutor(max_workers=3) as executor: # Limit workers to avoid memory issues
|
| 581 |
+
futures = [
|
| 582 |
+
executor.submit(
|
| 583 |
+
process_single_position_threaded,
|
| 584 |
+
i,
|
| 585 |
+
before_contents_list[i],
|
| 586 |
+
after_contents_list[i],
|
| 587 |
+
timestamp_str,
|
| 588 |
+
session_id
|
| 589 |
+
)
|
| 590 |
+
for i in range(6)
|
| 591 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
|
| 593 |
+
for future in as_completed(futures):
|
| 594 |
+
result = future.result()
|
| 595 |
+
pos_key = list(result.keys())[0] # e.g., 'position_1'
|
| 596 |
+
position_results.append(result)
|
| 597 |
+
all_visualizations.append(result[pos_key]["visualization_url"])
|
| 598 |
+
|
| 599 |
+
# Collect for deduplication
|
| 600 |
+
image_pairs.append((result["_before_bgr"], result["_after_bgr"]))
|
| 601 |
+
all_before_images.append(result["_before_bgr"])
|
| 602 |
+
all_after_images.append(result["_after_bgr"])
|
| 603 |
+
result.pop("_before_bgr", None)
|
| 604 |
+
result.pop("_after_bgr", None)
|
| 605 |
+
|
| 606 |
+
all_before_detections.append(result["before_detections"])
|
| 607 |
+
all_after_detections.append(result["after_detections"])
|
| 608 |
+
|
| 609 |
+
# Update statistics
|
| 610 |
+
comparison = result[pos_key]
|
| 611 |
+
total_new_damages += len(comparison["new_damages"])
|
| 612 |
+
total_existing_damages += len(comparison["repaired_damages"])
|
| 613 |
+
total_matched_damages += len(comparison["matched_damages"])
|
| 614 |
+
|
| 615 |
+
# Sort position_results by position number
|
| 616 |
+
position_results.sort(key=lambda x: int(list(x.keys())[0].split('_')[1]))
|
| 617 |
+
|
| 618 |
+
# Deduplicate BEFORE damages across all 6 views using DINOv2
|
| 619 |
+
print("π Deduplicating damages across views using DINOv2...")
|
| 620 |
unique_before = comparator.deduplicate_detections_across_views(
|
| 621 |
all_before_detections, all_before_images
|
| 622 |
)
|
| 623 |
|
| 624 |
+
# Deduplicate AFTER damages across all 6 views using DINOv2
|
| 625 |
unique_after = comparator.deduplicate_detections_across_views(
|
| 626 |
all_after_detections, all_after_images
|
| 627 |
)
|
| 628 |
|
| 629 |
+
print(
|
| 630 |
+
f"β
Before: {sum(len(d['boxes']) for d in all_before_detections)} detections β {len(unique_before)} unique")
|
| 631 |
+
print(f"β
After: {sum(len(d['boxes']) for d in all_after_detections)} detections β {len(unique_after)} unique")
|
| 632 |
|
| 633 |
# Determine overall case with deduplication
|
| 634 |
+
actual_new_damages = max(0, len(unique_after) - len(unique_before))
|
| 635 |
|
| 636 |
overall_case = "CASE_3_SUCCESS"
|
| 637 |
overall_message = "Successful delivery - No damage detected"
|
|
|
|
| 644 |
overall_message = "Existing damages from beginning β Delivery completed"
|
| 645 |
|
| 646 |
# Create summary grid
|
| 647 |
+
grid_results = [res[list(res.keys())[0]] for res in position_results]
|
| 648 |
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
|
| 649 |
|
| 650 |
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
|
|
|
|
| 655 |
|
| 656 |
timestamp = datetime.now().isoformat()
|
| 657 |
|
| 658 |
+
# Clean up memory
|
| 659 |
+
gc.collect()
|
| 660 |
+
if torch.cuda.is_available():
|
| 661 |
+
torch.cuda.empty_cache()
|
| 662 |
+
|
| 663 |
+
# Enhanced response
|
| 664 |
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
|
| 665 |
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
|
| 666 |
|
|
|
|
| 671 |
"model_type": model_type,
|
| 672 |
"optimization_status": optimization_status,
|
| 673 |
"reid_enabled": True,
|
| 674 |
+
"reid_model": "DINOv2",
|
| 675 |
+
"memory_optimization": "ThreadPoolExecutor with global models",
|
| 676 |
"overall_result": {
|
| 677 |
"case": overall_case,
|
| 678 |
"message": overall_message,
|
|
|
|
| 682 |
"total_repaired_damages": int(total_existing_damages),
|
| 683 |
"unique_damages_before": int(len(unique_before)),
|
| 684 |
"unique_damages_after": int(len(unique_after)),
|
| 685 |
+
"actual_new_unique_damages": int(actual_new_damages)
|
| 686 |
}
|
| 687 |
},
|
| 688 |
"deduplication_info": {
|
| 689 |
+
"model": "DINOv2",
|
| 690 |
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
|
| 691 |
"before_unique_damages": int(len(unique_before)),
|
| 692 |
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
|
|
|
|
| 703 |
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
|
| 704 |
else "Proceed with delivery completion"
|
| 705 |
},
|
| 706 |
+
"performance_note": f"Using {model_type} + DINOv2 ReID with memory optimization"
|
| 707 |
})
|
| 708 |
|
| 709 |
except Exception as e:
|
| 710 |
+
# Clean up on error
|
| 711 |
+
gc.collect()
|
| 712 |
+
if torch.cuda.is_available():
|
| 713 |
+
torch.cuda.empty_cache()
|
| 714 |
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
|
| 715 |
|
| 716 |
|
|
|
|
| 717 |
if __name__ == "__main__":
|
| 718 |
import os
|
| 719 |
uvicorn.run(
|
|
|
|
| 722 |
port=int(os.environ.get("PORT", 7860)),
|
| 723 |
reload=False,
|
| 724 |
log_level="info"
|
| 725 |
+
)
|