Spaces:
Sleeping
Sleeping
File size: 27,589 Bytes
84b458c e83afa6 84b458c 51aa863 e83afa6 84b458c 51aa863 84b458c 23f6757 84b458c 5cc72f5 84b458c 51aa863 84b458c 23f6757 51aa863 23f6757 5cc72f5 e83afa6 51aa863 23f6757 26f20f9 23f6757 e83afa6 26f20f9 23f6757 e83afa6 23f6757 5cc72f5 23f6757 5cc72f5 e83afa6 23f6757 5cc72f5 23f6757 5cc72f5 e83afa6 23f6757 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 23f6757 e83afa6 23f6757 5cc72f5 e83afa6 5cc72f5 23f6757 26f20f9 23f6757 26f20f9 23f6757 26f20f9 23f6757 26f20f9 51aa863 23f6757 51aa863 23f6757 26f20f9 51aa863 26f20f9 5cc72f5 23f6757 e83afa6 5cc72f5 23f6757 e83afa6 5cc72f5 23f6757 51aa863 23f6757 5cc72f5 23f6757 26f20f9 23f6757 84b458c ceb9e66 84b458c ceb9e66 84b458c 5cc72f5 84b458c 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 84b458c 23f6757 84b458c 23f6757 5cc72f5 84b458c 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 23f6757 5cc72f5 84b458c 51aa863 23f6757 51aa863 84b458c 5cc72f5 84b458c 51aa863 23f6757 5cc72f5 23f6757 84b458c 51aa863 e83afa6 23f6757 5cc72f5 51aa863 23f6757 51aa863 23f6757 51aa863 5cc72f5 51aa863 5cc72f5 51aa863 e83afa6 51aa863 84b458c e83afa6 51aa863 e83afa6 51aa863 e83afa6 51aa863 ceb9e66 e83afa6 ceb9e66 51aa863 e83afa6 51aa863 e83afa6 7f8e169 e83afa6 51aa863 5cc72f5 51aa863 5cc72f5 51aa863 5cc72f5 51aa863 5cc72f5 51aa863 84b458c ceb9e66 84b458c ceb9e66 51aa863 ceb9e66 51aa863 23f6757 84b458c 5cc72f5 23f6757 5cc72f5 23f6757 84b458c 51aa863 e83afa6 23f6757 5cc72f5 51aa863 23f6757 51aa863 84b458c e83afa6 84b458c e83afa6 51aa863 84b458c e83afa6 51aa863 e83afa6 84b458c e83afa6 84b458c e83afa6 84b458c e83afa6 51aa863 e83afa6 84b458c e83afa6 84b458c 51aa863 23f6757 51aa863 84b458c 51aa863 84b458c 51aa863 84b458c 23f6757 84b458c 51aa863 e83afa6 84b458c 51aa863 ceb9e66 84b458c 5cc72f5 84b458c 5cc72f5 51aa863 84b458c 51aa863 84b458c 51aa863 84b458c ceb9e66 84b458c 51aa863 84b458c 51aa863 5cc72f5 84b458c e83afa6 84b458c 11f621a 84b458c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import io
from typing import List
import uvicorn
import numpy as np
import uuid
from datetime import datetime
from fastapi import FastAPI, UploadFile, File, HTTPException, Form
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from PIL import Image
import cv2
import yaml
from src.detection import YOLOv11Detector
from src.comparison import DamageComparator
from src.visualization import DamageVisualizer
from pathlib import Path
app = FastAPI(
title="Car Damage Detection API",
description="YOLOv11-based car damage detection and comparison system with PyTorch and ONNX support (Optimized for ONNX Runtime v1.19 + opset 21)",
version="1.2.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize components
detector = None
comparator = DamageComparator()
visualizer = DamageVisualizer()
# Model paths mapping - PT and ONNX versions
MODEL_PATHS = {
# PT models (original)
0: "models_small/best.pt", # Small v1 PT
1: "models_small_version_2/best.pt", # Small v2 PT
2: "models_medium/best.pt", # Medium v1 PT
3: "models_medium_version_2/best.pt", # Medium v2 PT
# ONNX models (optimized with v1.19 + opset 21)
4: "models_small/best.onnx", # Small v1 ONNX
5: "models_small_version_2/best.onnx", # Small v2 ONNX
6: "models_medium/best.onnx", # Medium v1 ONNX
7: "models_medium_version_2/best.onnx" # Medium v2 ONNX
}
# Config paths - ONNX uses same config as PT version
CONFIG_PATHS = {
0: "config.yaml", # Small v1 PT
1: "config_version2.yaml", # Small v2 PT
2: "config.yaml", # Medium v1 PT
3: "config_version2.yaml", # Medium v2 PT
4: "config.yaml", # Small v1 ONNX
5: "config_version2.yaml", # Small v2 ONNX
6: "config.yaml", # Medium v1 ONNX
7: "config_version2.yaml" # Medium v2 ONNX
}
# Mapping from PT index to ONNX index
PT_TO_ONNX_MAPPING = {
0: 4, # Small v1 -> ONNX
1: 5, # Small v2 -> ONNX
2: 6, # Medium v1 -> ONNX
3: 7, # Medium v2 -> ONNX
4: None # Large has no ONNX
}
def get_optimal_model_index(select_models: int, prefer_onnx: bool = True) -> int:
"""
Enhanced model selection with performance optimization info
"""
# If user explicitly selects ONNX index (5..8) => use that ONNX with optimizations
if select_models in (4, 5, 6, 7):
onnx_path = Path(MODEL_PATHS.get(select_models, ""))
if not onnx_path.exists():
raise FileNotFoundError(
f"Requested ONNX model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
print(f"π Selected ONNX model with MAXIMUM optimizations: {MODEL_PATHS[select_models]}")
return select_models
# Normalize to valid PT indices
if select_models not in (0, 1, 2, 3):
select_models = 2 # default to medium v1
# PT preferred for 0..4
pt_path = Path(MODEL_PATHS.get(select_models, ""))
if pt_path.exists():
print(f"π¦ Selected PyTorch model: {MODEL_PATHS[select_models]}")
return select_models
# If PT not found and prefer_onnx: fallback to ONNX with optimizations
onnx_index = PT_TO_ONNX_MAPPING.get(select_models)
if prefer_onnx and onnx_index is not None:
onnx_path = Path(MODEL_PATHS.get(onnx_index, ""))
if onnx_path.exists():
print(f"PT not found at {pt_path}, falling back to optimized ONNX {MODEL_PATHS[onnx_index]}")
return onnx_index
# No suitable file found
raise FileNotFoundError(f"Requested PT model index {select_models} not found at {MODEL_PATHS.get(select_models)}")
def load_detector(select_models: int = 2, prefer_onnx: bool = True):
"""
Args:
select_models: Model selection
prefer_onnx: Whether to prefer ONNX format for fallback
"""
global detector, comparator, visualizer
actual_model_index = get_optimal_model_index(select_models, prefer_onnx)
# Get appropriate config file
config_file = CONFIG_PATHS.get(actual_model_index, "config.yaml")
# Load config
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
# Update config with selected model path
config['model']['path'] = MODEL_PATHS[actual_model_index]
# Save updated config to temp file
temp_config = f'temp_config_{actual_model_index}.yaml'
with open(temp_config, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
# Reload all components with new config
detector = YOLOv11Detector(config_path=temp_config)
comparator = DamageComparator(config_path=temp_config)
visualizer = DamageVisualizer(config_path=temp_config)
# Log model info with optimization status
model_type = "ONNX" if MODEL_PATHS[actual_model_index].endswith('.onnx') else "PyTorch"
model_labels = [
"Small v1", "Small v2", "Medium v1", "Medium v2",
"Small v1 ONNX", "Small v2 ONNX", "Medium v1 ONNX", "Medium v2 ONNX"
]
if 0 <= select_models < len(model_labels):
model_size = model_labels[select_models]
else:
raise ValueError(f"select_models={select_models} must be 0-7")
# Enhanced logging for optimization status
optimization_status = "π MAXIMUM OPTIMIZATIONS" if model_type == "ONNX" else "π¦ Standard PyTorch"
print(f"Loaded {model_size} model in {model_type} format - {optimization_status}")
# Show performance info for ONNX models
if model_type == "ONNX" and hasattr(detector, 'get_performance_info'):
perf_info = detector.get_performance_info()
if 'providers' in perf_info:
print(f"Provider: {perf_info['providers'][0]}")
if 'optimization_level' in perf_info:
print(f"Graph optimizations: {perf_info['optimization_level']}")
return detector
# Initialize default detector with medium model (preferring ONNX for performance)
print("π Initializing API with optimized ONNX Runtime support...")
detector = load_detector(2, prefer_onnx=True)
comparator = DamageComparator(config_path=CONFIG_PATHS[2])
visualizer = DamageVisualizer(config_path=CONFIG_PATHS[2])
# Create necessary directories
UPLOADS_DIR = Path("uploads")
RESULTS_DIR = Path("results")
UPLOADS_DIR.mkdir(exist_ok=True)
RESULTS_DIR.mkdir(exist_ok=True)
# Mount static files directory
app.mount("/uploads", StaticFiles(directory="uploads"), name="uploads")
@app.get("/")
async def root():
"""Root endpoint with enhanced model info"""
return {
"message": "Car Damage Detection API with YOLOv11 (ONNX Runtime v1.19 optimized)",
"version": "1.2.0",
"optimizations": {
"onnx_runtime": "v1.19+ with opset 21 support",
"performance_features": [
"Graph optimizations (ALL level)",
"Dynamic thread pool with load balancing",
"Memory arena optimizations",
"CPU spinning for low latency",
"OpenMP with ACTIVE wait policy"
]
},
"model_options": {
"0": "Small model v1 (PyTorch)",
"1": "Small model v2 (PyTorch)",
"2": "Medium model v1 (PyTorch)",
"3": "Medium model v2 (PyTorch)",
"4": "Large model (PyTorch only)",
"5": "Small model v1 (ONNX - OPTIMIZED)",
"6": "Small model v2 (ONNX - OPTIMIZED)",
"7": "Medium model v1 (ONNX - OPTIMIZED)",
"8": "Medium model v2 (ONNX - OPTIMIZED)"
},
"recommendation": "Use indices 5-8 for maximum performance with ONNX optimizations",
"endpoints": {
"/docs": "API documentation",
"/detect": "Single/Multi image detection",
"/compare": "Compare before/after images (6 pairs)",
"/uploads/{filename}": "Access saved visualization images",
"/health": "Health check",
"/model-info": "Get current model information",
"/performance-info": "Get optimization details"
}
}
@app.get("/health")
async def health_check():
"""Enhanced health check with optimization status"""
health_info = {
"status": "healthy",
"model": "YOLOv11",
"backend": "ONNX/PyTorch"
}
if detector and hasattr(detector, 'get_performance_info'):
perf_info = detector.get_performance_info()
health_info.update({
"model_type": perf_info.get("model_type", "Unknown"),
"optimization_status": "Optimized" if perf_info.get("model_type") == "ONNX" else "Standard"
})
return health_info
@app.get("/model-info")
async def get_model_info():
"""Get comprehensive information about currently loaded model"""
if detector is None:
return {"error": "No model loaded"}
model_path = detector.model_path
model_type = "ONNX" if model_path.endswith('.onnx') else "PyTorch"
info = {
"model_path": model_path,
"model_type": model_type,
"confidence_threshold": detector.confidence,
"iou_threshold": detector.iou_threshold,
"classes": detector.classes,
"optimization_status": "Optimized" if model_type == "ONNX" else "Standard"
}
# Add detailed performance info for ONNX models
if hasattr(detector, 'get_performance_info'):
perf_info = detector.get_performance_info()
info.update(perf_info)
return info
@app.get("/performance-info")
async def get_performance_info():
"""Get detailed optimization and performance information"""
if detector is None:
return {"error": "No model loaded"}
if hasattr(detector, 'get_performance_info'):
return detector.get_performance_info()
else:
return {
"model_type": "PyTorch",
"optimization_level": "Standard",
"note": "Performance optimizations available for ONNX models only"
}
@app.post("/detect")
async def detect_single_image(
file: UploadFile = File(None),
files: List[UploadFile] = File(None),
select_models: int = Form(2),
prefer_onnx: bool = Form(True)
):
"""
Multi-view detection with ONNX Runtime optimizations
Args:
file: Single image (backward compatibility)
files: Multiple images for multi-view detection
select_models: Model selection
- 0-4: PyTorch models (standard performance)
- 5-8: ONNX models (maximum optimizations)
prefer_onnx: Whether to prefer ONNX format (default: True for better performance)
"""
try:
# Validate select_models
if select_models not in list(range(0, 8)):
raise HTTPException(status_code=400,
detail="select_models must be 0-8 (0-4=PyTorch, 5-8=ONNX optimized)")
# Load appropriate detector
current_detector = load_detector(select_models, prefer_onnx)
# Case 1: Single image (backward compatibility)
if file is not None:
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Perform detection
detections = current_detector.detect(image_bgr)
# Create visualization
visualized = visualizer.draw_detections(image_bgr, detections, 'new_damage')
# Save and return
filename = f"detection_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}.jpg"
output_path = UPLOADS_DIR / filename
cv2.imwrite(str(output_path), visualized)
# Enhanced response with optimization info
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
return JSONResponse({
"status": "success",
"model_type": model_type,
"optimization_status": optimization_status,
"detections": detections,
"statistics": {
"total_damages": len(detections['boxes']),
"damage_types": list(set(detections['classes']))
},
"visualized_image_path": f"uploads/{filename}",
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
"filename": filename,
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (5-8) for better performance"
})
# Case 2: Multiple images - MULTI-VIEW DETECTION with ReID
elif files is not None and len(files) > 0:
print(f"\nMulti-view detection with {len(files)} images")
images_list = []
detections_list = []
# Process all images
for idx, img_file in enumerate(files):
contents = await img_file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
images_list.append(image_bgr)
detections = current_detector.detect(image_bgr)
detections_list.append(detections)
print(f" View {idx + 1}: {len(detections['boxes'])} detections")
# DEDUPLICATION using ReID
print("\nPerforming cross-view deduplication...")
unique_damages = comparator.deduplicate_detections_across_views(
detections_list, images_list
)
# Create combined visualization
combined_height = max(img.shape[0] for img in images_list)
combined_width = sum(img.shape[1] for img in images_list)
combined_img = np.ones((combined_height, combined_width, 3), dtype=np.uint8) * 255
x_offset = 0
for img_idx, (image, detections) in enumerate(zip(images_list, detections_list)):
# Resize if needed
h, w = image.shape[:2]
if h != combined_height:
scale = combined_height / h
new_w = int(w * scale)
image = cv2.resize(image, (new_w, combined_height))
w = new_w
# Draw on combined image
combined_img[:, x_offset:x_offset + w] = image
# Draw detections with unique IDs
for det_idx, bbox in enumerate(detections['boxes']):
# Find unique damage ID for this detection
damage_id = None
for uid, damage_info in unique_damages.items():
for d in damage_info['detections']:
if d['view_idx'] == img_idx and d['bbox'] == bbox:
damage_id = uid
break
# Draw with unique ID
x1, y1, x2, y2 = bbox
x1 += x_offset
x2 += x_offset
# Color based on unique ID
if damage_id:
color_hash = int(damage_id[-6:], 16)
color = ((color_hash >> 16) & 255, (color_hash >> 8) & 255, color_hash & 255)
else:
color = (0, 0, 255)
cv2.rectangle(combined_img, (x1, y1), (x2, y2), color, 2)
# Label
label = f"{damage_id[:8] if damage_id else 'Unknown'}"
cv2.putText(combined_img, label, (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
x_offset += w
# Save combined visualization
filename = f"multiview_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}.jpg"
output_path = UPLOADS_DIR / filename
cv2.imwrite(str(output_path), combined_img)
# Return results with optimization info
total_detections = sum(len(d['boxes']) for d in detections_list)
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
return JSONResponse({
"status": "success",
"mode": "multi_view_with_reid",
"model_type": model_type,
"optimization_status": optimization_status,
"total_detections_all_views": total_detections,
"unique_damages_count": len(unique_damages),
"unique_damages": {
damage_id: {
"appears_in_views": info['views'],
"class": info['class'],
"avg_confidence": float(info['avg_confidence']),
"detection_count": len(info['detections'])
}
for damage_id, info in unique_damages.items()
},
"reduction_rate": f"{(1 - len(unique_damages) / total_detections) * 100:.1f}%" if total_detections > 0 else "0%",
"visualized_image_path": f"uploads/{filename}",
"visualized_image_url": f"http://localhost:8000/uploads/{filename}",
"message": f"Detected {total_detections} damages across {len(files)} views, "
f"identified {len(unique_damages)} unique damages using ReID",
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (5-8) for better performance"
})
else:
raise HTTPException(status_code=400, detail="No image provided")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Detection failed: {str(e)}")
@app.post("/compare")
async def compare_vehicle_damages(
# Before delivery images (6 positions)
before_1: UploadFile = File(...),
before_2: UploadFile = File(...),
before_3: UploadFile = File(...),
before_4: UploadFile = File(...),
before_5: UploadFile = File(...),
before_6: UploadFile = File(...),
# After delivery images (6 positions)
after_1: UploadFile = File(...),
after_2: UploadFile = File(...),
after_3: UploadFile = File(...),
after_4: UploadFile = File(...),
after_5: UploadFile = File(...),
after_6: UploadFile = File(...),
# Model selection
select_models: int = Form(2),
prefer_onnx: bool = Form(True)
):
"""
Enhanced comparison with ONNX Runtime optimizations and ReID
Args:
before_1-6: Before delivery images from 6 positions
after_1-6: After delivery images from 6 positions
select_models: Model selection (0-4=PyTorch, 5-8=ONNX optimized)
prefer_onnx: Whether to prefer ONNX format (default: True)
"""
try:
# Validate select_models
if select_models not in list(range(0, 8)):
raise HTTPException(status_code=400,
detail="select_models must be 0-8 (0-4=PyTorch, 5-8=ONNX optimized)")
# Load appropriate detector
current_detector = load_detector(select_models, prefer_onnx)
before_images = [before_1, before_2, before_3, before_4, before_5, before_6]
after_images = [after_1, after_2, after_3, after_4, after_5, after_6]
position_results = []
all_visualizations = []
image_pairs = []
# Collect all before/after images and detections
all_before_images = []
all_after_images = []
all_before_detections = []
all_after_detections = []
# Overall statistics
total_new_damages = 0
total_existing_damages = 0
total_matched_damages = 0
session_id = str(uuid.uuid4())[:8]
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
# Process each position pair
for i in range(6):
before_contents = await before_images[i].read()
after_contents = await after_images[i].read()
before_img = Image.open(io.BytesIO(before_contents)).convert("RGB")
after_img = Image.open(io.BytesIO(after_contents)).convert("RGB")
before_np = np.array(before_img)
after_np = np.array(after_img)
before_bgr = cv2.cvtColor(before_np, cv2.COLOR_RGB2BGR)
after_bgr = cv2.cvtColor(after_np, cv2.COLOR_RGB2BGR)
# Store for multi-view analysis
all_before_images.append(before_bgr)
all_after_images.append(after_bgr)
image_pairs.append((before_bgr, after_bgr))
# Detect damages
before_detections = current_detector.detect(before_bgr)
after_detections = current_detector.detect(after_bgr)
all_before_detections.append(before_detections)
all_after_detections.append(after_detections)
# Enhanced comparison with ReID
comparison = comparator.analyze_damage_status(
before_detections, after_detections,
before_bgr, after_bgr
)
# Update statistics
total_new_damages += len(comparison['new_damages'])
total_existing_damages += len(comparison['repaired_damages'])
total_matched_damages += len(comparison['matched_damages'])
# Create visualization
vis_img = visualizer.create_comparison_visualization(
before_bgr, after_bgr,
before_detections, after_detections,
comparison
)
vis_filename = f"comparison_{timestamp_str}_{session_id}_pos{i + 1}.jpg"
vis_path = UPLOADS_DIR / vis_filename
cv2.imwrite(str(vis_path), vis_img)
vis_url = f"http://localhost:8000/uploads/{vis_filename}"
all_visualizations.append(vis_url)
# Store position result with ReID info
position_results.append({
f"position_{i + 1}": {
"case": comparison['case'],
"message": comparison['message'],
"statistics": comparison['statistics'],
"new_damages": comparison['new_damages'],
"matched_damages": comparison['matched_damages'],
"repaired_damages": comparison['repaired_damages'],
"using_reid": comparison['statistics'].get('using_reid', True),
"visualization_path": f"uploads/{vis_filename}",
"visualization_url": vis_url,
"filename": vis_filename
}
})
# Deduplicate BEFORE damages across all 6 views
unique_before = comparator.deduplicate_detections_across_views(
all_before_detections, all_before_images
)
# Deduplicate AFTER damages across all 6 views
unique_after = comparator.deduplicate_detections_across_views(
all_after_detections, all_after_images
)
print(f"Before: {sum(len(d['boxes']) for d in all_before_detections)} detections β {len(unique_before)} unique")
print(f"After: {sum(len(d['boxes']) for d in all_after_detections)} detections β {len(unique_after)} unique")
# Determine overall case with deduplication
actual_new_damages = len(unique_after) - len(unique_before)
overall_case = "CASE_3_SUCCESS"
overall_message = "Successful delivery - No damage detected"
if actual_new_damages > 0:
overall_case = "CASE_2_NEW_DAMAGE"
overall_message = f"Error during delivery - {actual_new_damages} new unique damage(s) detected"
elif len(unique_before) > 0 and actual_new_damages <= 0:
overall_case = "CASE_1_EXISTING"
overall_message = "Existing damages from beginning β Delivery completed"
# Create summary grid
grid_results = [res[f"position_{i + 1}"] for i, res in enumerate(position_results)]
grid_img = visualizer.create_summary_grid(grid_results, image_pairs)
grid_filename = f"summary_grid_{timestamp_str}_{session_id}.jpg"
grid_path = UPLOADS_DIR / grid_filename
cv2.imwrite(str(grid_path), grid_img)
grid_url = f"http://localhost:8000/uploads/{grid_filename}"
timestamp = datetime.now().isoformat()
# Enhanced response with optimization info
model_type = "ONNX" if current_detector.model_path.endswith('.onnx') else "PyTorch"
optimization_status = "π OPTIMIZED" if model_type == "ONNX" else "π¦ Standard"
return JSONResponse({
"status": "success",
"session_id": session_id,
"timestamp": timestamp,
"model_type": model_type,
"optimization_status": optimization_status,
"reid_enabled": True,
"overall_result": {
"case": overall_case,
"message": overall_message,
"statistics": {
"total_new_damages": int(total_new_damages),
"total_matched_damages": int(total_matched_damages),
"total_repaired_damages": int(total_existing_damages),
"unique_damages_before": int(len(unique_before)),
"unique_damages_after": int(len(unique_after)),
"actual_new_unique_damages": int(max(0, len(unique_after) - len(unique_before)))
}
},
"deduplication_info": {
"before_total_detections": int(sum(len(d['boxes']) for d in all_before_detections)),
"before_unique_damages": int(len(unique_before)),
"after_total_detections": int(sum(len(d['boxes']) for d in all_after_detections)),
"after_unique_damages": int(len(unique_after)),
"duplicate_reduction_rate": f"{(1 - len(unique_after) / sum(len(d['boxes']) for d in all_after_detections)) * 100:.1f}%"
if sum(len(d['boxes']) for d in all_after_detections) > 0 else "0%"
},
"position_results": position_results,
"summary_visualization_path": f"uploads/{grid_filename}",
"summary_visualization_url": grid_url,
"all_visualizations": all_visualizations,
"recommendations": {
"action_required": bool(actual_new_damages > 0),
"suggested_action": "Investigate delivery process" if actual_new_damages > 0
else "Proceed with delivery completion"
},
"performance_note": "Using ONNX optimizations" if model_type == "ONNX" else "Consider using ONNX models (5-8) for better performance"
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Comparison failed: {str(e)}")
if __name__ == "__main__":
import os
uvicorn.run(
"main:app",
host="0.0.0.0",
port=int(os.environ.get("PORT", 7860)),
reload=False,
log_level="info"
)
|