Spaces:
Running
Running
File size: 2,490 Bytes
0fc77f3 79d952a 0fc77f3 90bc37b 0fc77f3 79d952a 0fc77f3 79d952a 90bc37b 79d952a 90bc37b 0fc77f3 79d952a 0fc77f3 90bc37b 79d952a 90bc37b 79d952a 90bc37b 0fc77f3 79d952a 0fc77f3 79d952a 0fc77f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os, json, torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from config import BASE_MODEL, ADAPTERS, DEVICE, HF_TOKEN
def get_current_branch():
if os.path.exists("current_branch.txt"):
with open("current_branch.txt", "r") as f:
return f.read().strip()
return "latest"
class ModelWrapper:
def __init__(self):
# Flags ์ ๋ณด ๋ก๋
flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
self.num_flags = len(self.flags_order)
# ํ ํฌ๋์ด์ ๋ ๋ฒ ์ด์ค ๋ชจ๋ธ์์ ๋ก๋
self.tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL,
use_fast=True,
token=HF_TOKEN
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
# ๋ฒ ์ด์ค ๋ชจ๋ธ ๋ก๋
branch = get_current_branch()
base = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
trust_remote_code=True,
token=HF_TOKEN
)
# LoRA ์ด๋ํฐ ์ ์ฉ
self.model = PeftModel.from_pretrained(
base,
ADAPTERS,
revision=branch,
device_map="auto",
token=HF_TOKEN
)
# ์ปค์คํ
ํค๋ ์ถ๊ฐ
hidden_size = self.model.config.hidden_size
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
# .pt ํ์ผ์ด ์์ผ๋ฉด ๊ทธ๋ฅ ๋์ด๊ฐ
for head_name, file_name in [
("delta_head", "delta_head.pt"),
("flag_head", "flag_head.pt"),
("flag_threshold_head", "flag_threshold_head.pt")
]:
try:
if os.path.exists(file_name):
getattr(self.model, head_name).load_state_dict(
torch.load(file_name, map_location=DEVICE)
)
except Exception as e:
print(f"[WARN] Failed to load {file_name}: {e}")
self.model.eval()
def get(self):
return self.tokenizer, self.model, self.flags_order
|