File size: 2,490 Bytes
0fc77f3
 
 
 
79d952a
0fc77f3
 
 
 
 
90bc37b
0fc77f3
 
 
79d952a
0fc77f3
 
 
 
79d952a
90bc37b
79d952a
90bc37b
 
 
0fc77f3
 
 
 
79d952a
0fc77f3
90bc37b
 
 
 
 
 
79d952a
 
90bc37b
 
79d952a
90bc37b
 
 
 
0fc77f3
79d952a
0fc77f3
 
 
 
 
79d952a
 
 
 
 
 
 
 
 
 
 
 
 
0fc77f3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os, json, torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from config import BASE_MODEL, ADAPTERS, DEVICE, HF_TOKEN

def get_current_branch():
    if os.path.exists("current_branch.txt"):
        with open("current_branch.txt", "r") as f:
            return f.read().strip()
    return "latest"

class ModelWrapper:
    def __init__(self):
        # Flags ์ •๋ณด ๋กœ๋“œ
        flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
        self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
        self.num_flags = len(self.flags_order)

        # ํ† ํฌ๋‚˜์ด์ €๋Š” ๋ฒ ์ด์Šค ๋ชจ๋ธ์—์„œ ๋กœ๋“œ
        self.tokenizer = AutoTokenizer.from_pretrained(
            BASE_MODEL,
            use_fast=True,
            token=HF_TOKEN
        )
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "right"

        # ๋ฒ ์ด์Šค ๋ชจ๋ธ ๋กœ๋“œ
        branch = get_current_branch()
        base = AutoModelForCausalLM.from_pretrained(
            BASE_MODEL,
            device_map="auto",
            trust_remote_code=True,
            token=HF_TOKEN
        )

        # LoRA ์–ด๋Œ‘ํ„ฐ ์ ์šฉ
        self.model = PeftModel.from_pretrained(
            base,
            ADAPTERS,
            revision=branch,
            device_map="auto",
            token=HF_TOKEN
        )

        # ์ปค์Šคํ…€ ํ—ค๋“œ ์ถ”๊ฐ€
        hidden_size = self.model.config.hidden_size
        self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
        self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
        self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)

        # .pt ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๊ทธ๋ƒฅ ๋„˜์–ด๊ฐ
        for head_name, file_name in [
            ("delta_head", "delta_head.pt"),
            ("flag_head", "flag_head.pt"),
            ("flag_threshold_head", "flag_threshold_head.pt")
        ]:
            try:
                if os.path.exists(file_name):
                    getattr(self.model, head_name).load_state_dict(
                        torch.load(file_name, map_location=DEVICE)
                    )
            except Exception as e:
                print(f"[WARN] Failed to load {file_name}: {e}")

        self.model.eval()

    def get(self):
        return self.tokenizer, self.model, self.flags_order