Spaces:
Sleeping
Sleeping
import pandas as pd | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import gradio as gr | |
class BookRecommender: | |
def __init__(self): | |
self.df = None | |
self.similarity_matrix = None | |
def load_data(self, file_obj): | |
try: | |
if file_obj.name.endswith('.csv'): | |
df = pd.read_csv(file_obj) | |
elif file_obj.name.endswith(('.xls', '.xlsx')): | |
df = pd.read_excel(file_obj) | |
else: | |
raise ValueError("Unsupported file format. Please provide a CSV or Excel file.") | |
return df | |
except Exception as e: | |
return str(e) | |
def preprocess_data(self, df): | |
df['summary'] = df['summary'].fillna('') | |
df['title'] = df['title'].fillna('') | |
df = df.drop_duplicates(subset=['title', 'summary']) | |
return df | |
def create_tfidf_matrix(self, df): | |
tfidf = TfidfVectorizer(stop_words='english') | |
tfidf_matrix = tfidf.fit_transform(df['summary']) | |
return tfidf_matrix | |
def calculate_similarity(self, tfidf_matrix): | |
return cosine_similarity(tfidf_matrix) | |
def recommend_books(self, book_title): | |
if self.df is None or self.similarity_matrix is None: | |
return ["Please upload and process a file first."] | |
try: | |
book_index = self.df[self.df['title'] == book_title].index[0] | |
except IndexError: | |
return ["Book title not found."] | |
similar_books_indices = self.similarity_matrix[book_index].argsort()[::-1][1:6] | |
return self.df['title'].iloc[similar_books_indices].tolist() | |
def create_interface(self): | |
def process_file(file_obj): | |
if file_obj is None: | |
return "Please upload a file first.", None | |
self.df = self.load_data(file_obj) | |
self.df = self.preprocess_data(self.df) | |
tfidf_matrix = self.create_tfidf_matrix(self.df) | |
self.similarity_matrix = self.calculate_similarity(tfidf_matrix) | |
return "File uploaded and processed successfully!", gr.update(interactive=True) | |
def recommend_interface(book_title): | |
recommendations = self.recommend_books(book_title) | |
return recommendations | |
with gr.Blocks() as iface: | |
file_input = gr.File(label="Upload CSV or Excel file") | |
process_button = gr.Button("Process File") | |
status_text = gr.Textbox(label="Status", interactive=False) | |
text_input = gr.Textbox(lines=1, placeholder="Enter book title", interactive=False) | |
output_list = gr.Textbox(label="Recommended Books", interactive=False) | |
process_button.click(process_file, inputs=file_input, outputs=[status_text, text_input]) | |
text_input.submit(recommend_interface, inputs=text_input, outputs=output_list) | |
return iface | |
recommender = BookRecommender() | |
interface = recommender.create_interface() | |
interface.launch() | |