Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
class BookRecommender:
|
7 |
+
def __init__(self):
|
8 |
+
self.df = None
|
9 |
+
self.similarity_matrix = None
|
10 |
+
|
11 |
+
def load_data(self, file_obj):
|
12 |
+
try:
|
13 |
+
if file_obj.name.endswith('.csv'):
|
14 |
+
df = pd.read_csv(file_obj)
|
15 |
+
elif file_obj.name.endswith(('.xls', '.xlsx')):
|
16 |
+
df = pd.read_excel(file_obj)
|
17 |
+
else:
|
18 |
+
raise ValueError("Unsupported file format. Please provide a CSV or Excel file.")
|
19 |
+
return df
|
20 |
+
except Exception as e:
|
21 |
+
return str(e)
|
22 |
+
|
23 |
+
def preprocess_data(self, df):
|
24 |
+
df['summary'] = df['summary'].fillna('')
|
25 |
+
df['title'] = df['title'].fillna('')
|
26 |
+
df = df.drop_duplicates(subset=['title', 'summary'])
|
27 |
+
return df
|
28 |
+
|
29 |
+
def create_tfidf_matrix(self, df):
|
30 |
+
tfidf = TfidfVectorizer(stop_words='english')
|
31 |
+
tfidf_matrix = tfidf.fit_transform(df['summary'])
|
32 |
+
return tfidf_matrix
|
33 |
+
|
34 |
+
def calculate_similarity(self, tfidf_matrix):
|
35 |
+
return cosine_similarity(tfidf_matrix)
|
36 |
+
|
37 |
+
def recommend_books(self, book_title):
|
38 |
+
if self.df is None or self.similarity_matrix is None:
|
39 |
+
return ["Please upload and process a file first."]
|
40 |
+
try:
|
41 |
+
book_index = self.df[self.df['title'] == book_title].index[0]
|
42 |
+
except IndexError:
|
43 |
+
return ["Book title not found."]
|
44 |
+
|
45 |
+
similar_books_indices = self.similarity_matrix[book_index].argsort()[::-1][1:6]
|
46 |
+
return self.df['title'].iloc[similar_books_indices].tolist()
|
47 |
+
|
48 |
+
def create_interface(self):
|
49 |
+
def process_file(file_obj):
|
50 |
+
if file_obj is None:
|
51 |
+
return "Please upload a file first.", None
|
52 |
+
self.df = self.load_data(file_obj)
|
53 |
+
self.df = self.preprocess_data(self.df)
|
54 |
+
tfidf_matrix = self.create_tfidf_matrix(self.df)
|
55 |
+
self.similarity_matrix = self.calculate_similarity(tfidf_matrix)
|
56 |
+
return "File uploaded and processed successfully!", gr.update(interactive=True)
|
57 |
+
|
58 |
+
def recommend_interface(book_title):
|
59 |
+
recommendations = self.recommend_books(book_title)
|
60 |
+
return recommendations
|
61 |
+
|
62 |
+
with gr.Blocks() as iface:
|
63 |
+
file_input = gr.File(label="Upload CSV or Excel file")
|
64 |
+
process_button = gr.Button("Process File")
|
65 |
+
status_text = gr.Textbox(label="Status", interactive=False)
|
66 |
+
text_input = gr.Textbox(lines=1, placeholder="Enter book title", interactive=False)
|
67 |
+
output_list = gr.Textbox(label="Recommended Books", interactive=False)
|
68 |
+
|
69 |
+
process_button.click(process_file, inputs=file_input, outputs=[status_text, text_input])
|
70 |
+
text_input.submit(recommend_interface, inputs=text_input, outputs=output_list)
|
71 |
+
|
72 |
+
return iface
|
73 |
+
|
74 |
+
recommender = BookRecommender()
|
75 |
+
interface = recommender.create_interface()
|
76 |
+
interface.launch()
|