Spaces:
Running
on
Zero
Running
on
Zero
| # XoFTR: Cross-modal Feature Matching Transformer | |
| ### [Paper (arXiv)](https://arxiv.org/pdf/2404.09692) | [Paper (CVF)](https://openaccess.thecvf.com/content/CVPR2024W/IMW/papers/Tuzcuoglu_XoFTR_Cross-modal_Feature_Matching_Transformer_CVPRW_2024_paper.pdf) | |
| <br/> | |
| This is Pytorch implementation of XoFTR: Cross-modal Feature Matching Transformer [CVPR 2024 Image Matching Workshop](https://image-matching-workshop.github.io/) paper. | |
| XoFTR is a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images. | |
| <!--  --> | |
| <p align="center"> | |
| <img src="assets/figures/teaser.png" alt="teaser" width="500"/> | |
| </p> | |
| ## Colab demo | |
| To run XoFTR with custom image pairs without configuring your own GPU environment, you can use the Colab demo: | |
| [](https://colab.research.google.com/drive/1T495vybejujZjJlPY-sHm8YwV5Ss86AM?usp=sharing) | |
| ## Installation | |
| ```shell | |
| conda env create -f environment.yaml | |
| conda activate xoftr | |
| ``` | |
| Download links for | |
| - [Pretrained models weights](https://drive.google.com/drive/folders/1RAI243OHuyZ4Weo1NiTy280bCE_82s4q?usp=drive_link): Two versions available, trained at 640 and 840 resolutions. | |
| - [METU-VisTIR dataset](https://drive.google.com/file/d/1Sj_vxj-GXvDQIMSg-ZUJR0vHBLIeDrLg/view?usp=sharing) | |
| ## METU-VisTIR Dataset | |
| <!--  --> | |
| <p align="center"> | |
| <img src="assets/figures/dataset.png" alt="dataset" width="600"/> | |
| </p> | |
| This dataset includes thermal and visible images captured across six diverse scenes with ground-truth camera poses. Four of the scenes encompass images captured under both cloudy and sunny conditions, while the remaining two scenes exclusively feature cloudy conditions. Since the cameras are auto-focus, there may be result in slight imperfections in the ground truth camera parameters. For more information about the dataset, please refer to our [paper](https://arxiv.org/pdf/2404.09692). | |
| **License of the dataset:** | |
| The METU-VisTIR dataset is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). | |
| ### Data format | |
| The dataset is organized into folders according to scenarios. The organization format is as follows: | |
| ``` | |
| METU-VisTIR/ | |
| βββ index/ | |
| β βββ scene_info_test/ | |
| β β βββ cloudy_cloudy_scene_1.npz # scene info with test pairs | |
| β β βββ ... | |
| β βββ scene_info_val/ | |
| β β βββ cloudy_cloudy_scene_1.npz # scene info with val pairs | |
| β β βββ ... | |
| β βββ val_test_list/ | |
| β βββ test_list.txt # test scenes list | |
| β βββ val_list.txt # val scenes list | |
| βββ cloudy/ # cloudy scenes | |
| β βββ scene_1/ | |
| β β βββ thermal/ | |
| β β β βββ images/ # thermal images | |
| β β βββ visible/ | |
| β β βββ images/ # visible images | |
| β βββ ... | |
| βββ sunny/ # sunny scenes | |
| βββ ... | |
| ``` | |
| cloudy_cloudy_scene_\*.npz and cloudy_sunny_scene_\*.npz files contain GT camera poses and image pairs | |
| ## Runing XoFTR | |
| ### Demo to match image pairs with XoFTR | |
| A <span style="color:red">demo notebook</span> for XoFTR on a single pair of images is given in [notebooks/xoftr_demo.ipynb](notebooks/xoftr_demo.ipynb). | |
| ### Reproduce the testing results for relative pose estimation | |
| You need to download METU-VisTIR dataset. After downloading, unzip the required files. Then, symlinks need to be created for the `data` folder. | |
| ```shell | |
| unzip downloaded-file.zip | |
| # set up symlinks | |
| ln -s /path/to/METU_VisTIR/ /path/to/XoFTR/data/ | |
| ``` | |
| ```shell | |
| conda activate xoftr | |
| python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt | |
| # with visualization | |
| python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt --save_figs | |
| ``` | |
| The results and figures are saved to `results_relative_pose/`. | |
| <br/> | |
| ## Training | |
| See [Training XoFTR](./docs/TRAINING.md) for more details. | |
| ## Citation | |
| If you find this code useful for your research, please use the following BibTeX entry. | |
| ```bibtex | |
| @inproceedings{tuzcuouglu2024xoftr, | |
| title={XoFTR: Cross-modal Feature Matching Transformer}, | |
| author={Tuzcuo{\u{g}}lu, {\"O}nder and K{\"o}ksal, Aybora and Sofu, Bu{\u{g}}ra and Kalkan, Sinan and Alatan, A Aydin}, | |
| booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
| pages={4275--4286}, | |
| year={2024} | |
| } | |
| ``` | |
| ## Acknowledgement | |
| This code is derived from [LoFTR](https://github.com/zju3dv/LoFTR). We are grateful to the authors for their contribution of the source code. | |