Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,11 +53,6 @@ except Exception:
|
|
| 53 |
restart_space()
|
| 54 |
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 56 |
-
print(f"Initial leaderboard_df shape: {LEADERBOARD_DF.shape}")
|
| 57 |
-
print("Initial leaderboard_df columns:", LEADERBOARD_DF.columns.tolist())
|
| 58 |
-
print("Initial leaderboard_df sample data:")
|
| 59 |
-
print(LEADERBOARD_DF.head())
|
| 60 |
-
|
| 61 |
original_df = LEADERBOARD_DF
|
| 62 |
leaderboard_df = original_df.copy()
|
| 63 |
(
|
|
@@ -81,34 +76,15 @@ def update_table(
|
|
| 81 |
show_flagged: bool,
|
| 82 |
query: str,
|
| 83 |
):
|
| 84 |
-
filtered_df = filter_models(
|
| 85 |
-
hidden_df, type_query, size_query, precision_query,
|
| 86 |
-
add_special_tokens_query, num_few_shots_query,
|
| 87 |
-
show_deleted, show_merges, show_flagged
|
| 88 |
-
)
|
| 89 |
filtered_df = filter_queries(query, filtered_df)
|
| 90 |
-
|
| 91 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 92 |
-
print(
|
| 93 |
-
|
| 94 |
-
if not filtered_df.empty:
|
| 95 |
-
print(filtered_df.head()) # フィルタ後のデータを確認
|
| 96 |
-
else:
|
| 97 |
-
print("Filtered DataFrame is empty.")
|
| 98 |
-
|
| 99 |
df = select_columns(filtered_df, columns)
|
| 100 |
-
print(f"DataFrame after selecting columns: {df.shape}")
|
| 101 |
-
|
| 102 |
-
if not df.empty:
|
| 103 |
-
print(df.head()) # 選択後のデータを確認
|
| 104 |
-
else:
|
| 105 |
-
print("DataFrame after selecting columns is empty.")
|
| 106 |
-
|
| 107 |
return df
|
| 108 |
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 113 |
query = request.query_params.get("query") or ""
|
| 114 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
|
@@ -151,54 +127,33 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 151 |
|
| 152 |
|
| 153 |
def filter_models(
|
| 154 |
-
df: pd.DataFrame,
|
| 155 |
-
type_query: list,
|
| 156 |
-
size_query: list,
|
| 157 |
-
precision_query: list,
|
| 158 |
-
add_special_tokens_query: list,
|
| 159 |
-
num_few_shots_query: list,
|
| 160 |
-
show_deleted: bool,
|
| 161 |
-
show_merges: bool,
|
| 162 |
-
show_flagged: bool
|
| 163 |
) -> pd.DataFrame:
|
| 164 |
-
#
|
| 165 |
-
print(f"Initial DataFrame shape: {df.shape}")
|
| 166 |
-
|
| 167 |
-
# Show deleted models フィルタ
|
| 168 |
if show_deleted:
|
| 169 |
filtered_df = df
|
| 170 |
-
|
| 171 |
-
else:
|
| 172 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
type_emoji = [t[0] for t in type_query]
|
| 177 |
-
filtered_df = filtered_df[
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None", "Unknown"])]
|
| 182 |
-
print(f"After filtering by precision (including 'Unknown'): {filtered_df.shape}")
|
| 183 |
|
| 184 |
-
|
| 185 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 186 |
-
print(f"After filtering by add_special_tokens: {filtered_df.shape}")
|
| 187 |
-
|
| 188 |
-
# Num Few Shots フィルタ
|
| 189 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
| 190 |
-
print(f"After filtering by num_few_shots: {filtered_df.shape}")
|
| 191 |
-
|
| 192 |
-
# Model size フィルタ
|
| 193 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 194 |
-
params_column = pd.to_numeric(
|
| 195 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 196 |
-
filtered_df = filtered_df[mask]
|
| 197 |
-
print(f"After filtering by model size: {filtered_df.shape}")
|
| 198 |
-
|
| 199 |
return filtered_df
|
| 200 |
|
| 201 |
-
|
| 202 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 203 |
|
| 204 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 53 |
restart_space()
|
| 54 |
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
original_df = LEADERBOARD_DF
|
| 57 |
leaderboard_df = original_df.copy()
|
| 58 |
(
|
|
|
|
| 76 |
show_flagged: bool,
|
| 77 |
query: str,
|
| 78 |
):
|
| 79 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
| 81 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 82 |
+
print(filtered_df.head()) # フィルタ後のデータを確認
|
| 83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
return df
|
| 86 |
|
| 87 |
|
|
|
|
|
|
|
| 88 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 89 |
query = request.query_params.get("query") or ""
|
| 90 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
def filter_models(
|
| 130 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
) -> pd.DataFrame:
|
| 132 |
+
# Show all models
|
|
|
|
|
|
|
|
|
|
| 133 |
if show_deleted:
|
| 134 |
filtered_df = df
|
| 135 |
+
else: # Show only still on the hub models
|
|
|
|
| 136 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 137 |
+
|
| 138 |
+
#if not show_merges:
|
| 139 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 140 |
+
|
| 141 |
+
#if not show_flagged:
|
| 142 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 143 |
+
|
| 144 |
type_emoji = [t[0] for t in type_query]
|
| 145 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 146 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 147 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 148 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 152 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 153 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 154 |
+
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
| 155 |
return filtered_df
|
| 156 |
|
|
|
|
| 157 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
| 158 |
|
| 159 |
demo = gr.Blocks(css=custom_css)
|