Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -90,16 +90,25 @@ def update_table(
|
|
| 90 |
|
| 91 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 92 |
print(f"Filtered DataFrame shape: {filtered_df.shape}")
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
df = select_columns(filtered_df, columns)
|
| 96 |
print(f"DataFrame after selecting columns: {df.shape}")
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return df
|
| 100 |
|
| 101 |
|
| 102 |
|
|
|
|
| 103 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 104 |
query = request.query_params.get("query") or ""
|
| 105 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
|
@@ -163,24 +172,14 @@ def filter_models(
|
|
| 163 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 164 |
print(f"After filtering deleted models: {filtered_df.shape}")
|
| 165 |
|
| 166 |
-
# Show merges フィルタ(コメントアウトされている場合はスキップ)
|
| 167 |
-
# if not show_merges:
|
| 168 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 169 |
-
# print(f"After filtering merged models: {filtered_df.shape}")
|
| 170 |
-
|
| 171 |
-
# Show flagged フィルタ(コメントアウトされている場合はスキップ)
|
| 172 |
-
# if not show_flagged:
|
| 173 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 174 |
-
# print(f"After filtering flagged models: {filtered_df.shape}")
|
| 175 |
-
|
| 176 |
# Model type フィルタ
|
| 177 |
type_emoji = [t[0] for t in type_query]
|
| 178 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 179 |
print(f"After filtering by model type: {filtered_df.shape}")
|
| 180 |
|
| 181 |
-
# Precision
|
| 182 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 183 |
-
print(f"After filtering by precision: {filtered_df.shape}")
|
| 184 |
|
| 185 |
# Add Special Tokens フィルタ
|
| 186 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
|
|
|
| 90 |
|
| 91 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 92 |
print(f"Filtered DataFrame shape: {filtered_df.shape}")
|
| 93 |
+
|
| 94 |
+
if not filtered_df.empty:
|
| 95 |
+
print(filtered_df.head()) # フィルタ後のデータを確認
|
| 96 |
+
else:
|
| 97 |
+
print("Filtered DataFrame is empty.")
|
| 98 |
|
| 99 |
df = select_columns(filtered_df, columns)
|
| 100 |
print(f"DataFrame after selecting columns: {df.shape}")
|
| 101 |
+
|
| 102 |
+
if not df.empty:
|
| 103 |
+
print(df.head()) # 選択後のデータを確認
|
| 104 |
+
else:
|
| 105 |
+
print("DataFrame after selecting columns is empty.")
|
| 106 |
|
| 107 |
return df
|
| 108 |
|
| 109 |
|
| 110 |
|
| 111 |
+
|
| 112 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 113 |
query = request.query_params.get("query") or ""
|
| 114 |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
|
|
|
| 172 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 173 |
print(f"After filtering deleted models: {filtered_df.shape}")
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
# Model type フィルタ
|
| 176 |
type_emoji = [t[0] for t in type_query]
|
| 177 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 178 |
print(f"After filtering by model type: {filtered_df.shape}")
|
| 179 |
|
| 180 |
+
# Precision フィルタ("Unknown" を含める)
|
| 181 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None", "Unknown"])]
|
| 182 |
+
print(f"After filtering by precision (including 'Unknown'): {filtered_df.shape}")
|
| 183 |
|
| 184 |
# Add Special Tokens フィルタ
|
| 185 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|