Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import gradio as gr | |
| import numpy as np | |
| import random | |
| import logging | |
| import sys | |
| # 设置日志记录 | |
| logging.basicConfig(level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| stream=sys.stdout) | |
| logger = logging.getLogger(__name__) | |
| # 修复 Gradio JSON Schema 错误 | |
| try: | |
| import gradio_client.utils | |
| # 添加对布尔值的检查 | |
| original_get_type = gradio_client.utils.get_type | |
| def patched_get_type(schema): | |
| if isinstance(schema, bool): | |
| return "bool" | |
| if not isinstance(schema, dict): | |
| return "any" | |
| return original_get_type(schema) | |
| gradio_client.utils.get_type = patched_get_type | |
| logger.info("Successfully patched Gradio JSON schema processing") | |
| except Exception as e: | |
| logger.error(f"Failed to patch Gradio: {str(e)}") | |
| # import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
| logger.info(f"Using device: {device}") | |
| logger.info(f"Loading model: {model_repo_id}") | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| try: | |
| pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| logger.info("Model loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Error loading model: {str(e)}") | |
| raise | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| try: | |
| logger.info(f"Processing prompt: {prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| logger.info(f"Using seed: {seed}, width: {width}, height: {height}") | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| logger.info("Image generation successful") | |
| return image, seed | |
| except Exception as e: | |
| logger.error(f"Error in inference: {str(e)}") | |
| raise gr.Error(f"Error generating image: {str(e)}") | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| try: | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image Gradio Template") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, # 改为可见 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=2, | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| logger.info("Gradio interface created successfully") | |
| except Exception as e: | |
| logger.error(f"Error creating Gradio interface: {str(e)}") | |
| raise | |
| if __name__ == "__main__": | |
| try: | |
| logger.info("Starting Gradio app") | |
| demo.launch() | |
| except Exception as e: | |
| logger.error(f"Error launching app: {str(e)}") | |