import gradio as gr import numpy as np import random import logging import sys # 设置日志记录 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', stream=sys.stdout) logger = logging.getLogger(__name__) # 修复 Gradio JSON Schema 错误 try: import gradio_client.utils # 添加对布尔值的检查 original_get_type = gradio_client.utils.get_type def patched_get_type(schema): if isinstance(schema, bool): return "bool" if not isinstance(schema, dict): return "any" return original_get_type(schema) gradio_client.utils.get_type = patched_get_type logger.info("Successfully patched Gradio JSON schema processing") except Exception as e: logger.error(f"Failed to patch Gradio: {str(e)}") # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use logger.info(f"Using device: {device}") logger.info(f"Loading model: {model_repo_id}") if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 try: pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) logger.info("Model loaded successfully") except Exception as e: logger.error(f"Error loading model: {str(e)}") raise MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): try: logger.info(f"Processing prompt: {prompt}") if randomize_seed: seed = random.randint(0, MAX_SEED) logger.info(f"Using seed: {seed}, width: {width}, height: {height}") generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] logger.info("Image generation successful") return image, seed except Exception as e: logger.error(f"Error in inference: {str(e)}") raise gr.Error(f"Error generating image: {str(e)}") examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ try: with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, # 改为可见 ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) logger.info("Gradio interface created successfully") except Exception as e: logger.error(f"Error creating Gradio interface: {str(e)}") raise if __name__ == "__main__": try: logger.info("Starting Gradio app") demo.launch() except Exception as e: logger.error(f"Error launching app: {str(e)}")