vmem / utils /vis /get_visualization_surfels.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import sys
import json
import numpy as np
from PIL import Image
from torch.amp import autocast
import torch
import copy
from torch.nn import functional as F
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
sys.path.append("./extern/dust3r")
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
def visualize_surfels(
surfels,
draw_normals=False,
normal_scale=20,
disk_resolution=16,
disk_alpha=0.5
):
"""
Visualize surfels as 2D disks oriented by their normals in 3D using matplotlib.
Args:
surfels (list of Surfel): Each Surfel has at least:
- position: (x, y, z)
- normal: (nx, ny, nz)
- radius: scalar
- color: (R, G, B) in [0..255] (optional)
draw_normals (bool): If True, draws the surfel normals as quiver arrows.
normal_scale (float): Scale factor for the normal arrows.
disk_resolution (int): Number of segments to approximate each disk.
disk_alpha (float): Alpha (transparency) for the filled disks.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Prepare arrays for optional quiver (if draw_normals=True)
positions = []
normals = []
# We'll accumulate 3D polygons in a list for Poly3DCollection
polygons = []
polygon_colors = []
for s in surfels:
# --- Extract surfel data ---
position = s.position
normal = s.normal
radius = s.radius
if isinstance(position, torch.Tensor):
x, y, z = position.detach().cpu().numpy()
nx, ny, nz = normal.detach().cpu().numpy()
radius = radius.detach().cpu().numpy()
else:
x, y, z = position
nx, ny, nz = normal
radius = radius
# Convert color from [0..255] to [0..1], or use default
if s.color is None:
color = (0.2, 0.6, 1.0) # Light blue
else:
r, g, b = s.color
color = (r/255.0, g/255.0, b/255.0)
# --- Build local coordinate axes for the disk ---
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
# Skip degenerate normals to avoid nan
if norm_len < 1e-12:
continue
normal /= norm_len
# Pick an 'up' vector that is not too close to the normal
# so we can build a tangent plane
up = np.array([0, 0, 1], dtype=float)
if abs(normal.dot(up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
# xAxis = normal x up
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
# yAxis = normal x xAxis
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# --- Create a circle of 'disk_resolution' segments in local 2D coords ---
angles = np.linspace(0, 2*np.pi, disk_resolution, endpoint=False)
circle_points_3d = []
for theta in angles:
# local 2D circle: (r*cosθ, r*sinθ)
px = radius * np.cos(theta)
py = radius * np.sin(theta)
# transform to 3D world space: position + px*xAxis + py*yAxis
world_pt = np.array([x, y, z]) + px * xAxis + py * yAxis
circle_points_3d.append(world_pt)
# We have a list of [x, y, z]. For a filled polygon, Poly3DCollection
# wants them as a single Nx3 array.
circle_points_3d = np.array(circle_points_3d)
polygons.append(circle_points_3d)
polygon_colors.append(color)
# Collect positions and normals for quiver (if used)
positions.append([x, y, z])
normals.append(normal)
# --- Draw the disks as polygons ---
poly_collection = Poly3DCollection(
polygons,
facecolors=polygon_colors,
edgecolors='k', # black edge
linewidths=0.5,
alpha=disk_alpha
)
ax.add_collection3d(poly_collection)
# --- Optionally draw normal vectors (quiver) ---
if draw_normals and len(positions) > 0:
X = [p[0] for p in positions]
Y = [p[1] for p in positions]
Z = [p[2] for p in positions]
Nx = [n[0] for n in normals]
Ny = [n[1] for n in normals]
Nz = [n[2] for n in normals]
# Note: If your scene is large, you may want to increase `length`.
ax.quiver(
X, Y, Z,
Nx, Ny, Nz,
length=normal_scale,
color='red',
normalize=True
)
# --- Axis labels, aspect ratio, etc. ---
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
try:
ax.set_box_aspect((1, 1, 1))
except AttributeError:
pass # older MPL versions
plt.title("Surfels as Disks (Oriented by Normal)")
plt.show()
def visualize_pointcloud(
points,
colors=None,
title='Point Cloud',
point_size=1,
alpha=1.0,
bg_color=(240/255, 223/255, 223/255) # 新增参数,默认白色 (1,1,1)
):
"""
可视化3D点云,同时支持每个点的RGB或RGBA颜色,并保证x, y, z三个轴等比例缩放。
参数
----------
points : np.ndarray 或 torch.Tensor
形状为 [N, 3] 的数组或张量,每行表示一个3D点 (x, y, z)。
colors : None, str, 或 np.ndarray
- 如果为 None,则使用默认颜色 'blue'。
- 如果为字符串,则所有点均使用该颜色。
- 如果为数组,则形状应为 [N, 3] 或 [N, 4],表示每个点的颜色,值的范围应为 [0, 1](若为浮点数)。
title : str, 可选
图像标题,默认 'Point Cloud'。
point_size : float, 可选
点的大小,默认 1。
alpha : float, 可选
点的整体透明度,默认 1.0。
bg_color : tuple, 可选
背景颜色,格式为 (r, g, b),每个值的范围为 [0, 1],默认为白色 (1.0, 1.0, 1.0)。
示例
--------
>>> import numpy as np
>>> pts = np.random.rand(1000, 3)
>>> cols = np.random.rand(1000, 3)
>>> visualize_pointcloud(pts, colors=cols, title="随机点云", bg_color=(0.2, 0.2, 0.3))
"""
# 如果是 Torch 张量,则转换为 NumPy 数组
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(colors, torch.Tensor):
colors = colors.detach().cpu().numpy()
# 如果点云或颜色数据维度过高,则展平
if len(points.shape) > 2:
points = points.reshape(-1, 3)
if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
colors = colors.reshape(-1, colors.shape[-1])
# 验证点云形状
if points.shape[1] != 3:
raise ValueError("`points` array must have shape [N, 3].")
# 处理颜色参数
if colors is None:
colors = 'blue'
elif isinstance(colors, np.ndarray):
colors = np.asarray(colors)
if colors.shape[0] != points.shape[0]:
raise ValueError("Colors array length must match the number of points.")
if colors.shape[1] not in [3, 4]:
raise ValueError("Colors array must have shape [N, 3] or [N, 4].")
# 验证背景颜色参数
if not isinstance(bg_color, tuple) or len(bg_color) != 3:
raise ValueError("Background color must be a tuple of (r, g, b) with values between 0 and 1.")
# 提取坐标
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
# 创建图像,并设置自定义背景颜色
fig = plt.figure(figsize=(8, 6), facecolor=bg_color)
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor(bg_color)
# 绘制散点图
ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# 设置等比例缩放
max_range = np.array([x.max() - x.min(),
y.max() - y.min(),
z.max() - z.min()]).max() / 2.0
mid_x = (x.max() + x.min()) * 0.5
mid_y = (y.max() + y.min()) * 0.5
mid_z = (z.max() + z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
# 隐藏刻度和标签
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_xlabel('')
ax.set_ylabel('')
ax.set_zlabel('')
ax.grid(False)
# 隐藏3D坐标轴的面板(pane)来去除轴的显示
ax.xaxis.pane.set_visible(False)
ax.yaxis.pane.set_visible(False)
ax.zaxis.pane.set_visible(False)
# 设置标题(如果需要显示标题)
ax.set_title(title)
plt.tight_layout()
plt.show()
# def visualize_pointcloud(
# points,
# colors=None,
# title='Point Cloud',
# point_size=1,
# alpha=1.0
# ):
# """
# 可视化3D点云,同时支持每个点的RGB或RGBA颜色,并保证x, y, z三个轴等比例缩放。
# 参数
# ----------
# points : np.ndarray 或 torch.Tensor
# 形状为 [N, 3] 的数组或张量,每行表示一个3D点 (x, y, z)。
# colors : None, str, 或 np.ndarray
# - 如果为 None,则使用默认颜色 'blue'。
# - 如果为字符串,则所有点均使用该颜色。
# - 如果为数组,则形状应为 [N, 3] 或 [N, 4],表示每个点的颜色,值的范围应为 [0, 1](若为浮点数)。
# title : str, 可选
# 图像标题,默认 'Point Cloud'。
# point_size : float, 可选
# 点的大小,默认 1。
# alpha : float, 可选
# 点的整体透明度,默认 1.0。
# 示例
# --------
# >>> import numpy as np
# >>> pts = np.random.rand(1000, 3)
# >>> cols = np.random.rand(1000, 3)
# >>> visualize_pointcloud(pts, colors=cols, title="随机点云")
# """
# # 如果是 Torch 张量,则转换为 NumPy 数组
# if isinstance(points, torch.Tensor):
# points = points.detach().cpu().numpy()
# if isinstance(colors, torch.Tensor):
# colors = colors.detach().cpu().numpy()
# # 如果点云或颜色数据维度过高,则展平
# if len(points.shape) > 2:
# points = points.reshape(-1, 3)
# if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
# colors = colors.reshape(-1, colors.shape[-1])
# # 验证点云形状
# if points.shape[1] != 3:
# raise ValueError("`points` array must have shape [N, 3].")
# # 处理颜色参数
# if colors is None:
# colors = 'blue'
# elif isinstance(colors, np.ndarray):
# colors = np.asarray(colors)
# if colors.shape[0] != points.shape[0]:
# raise ValueError("Colors array length must match the number of points.")
# if colors.shape[1] not in [3, 4]:
# raise ValueError("Colors array must have shape [N, 3] or [N, 4].")
# # 提取坐标
# x = points[:, 0]
# y = points[:, 1]
# z = points[:, 2]
# # 创建图像,并设置背景为白色
# fig = plt.figure(figsize=(8, 6), facecolor='white')
# ax = fig.add_subplot(111, projection='3d')
# ax.set_facecolor('white')
# # 绘制散点图
# ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# # 设置等比例缩放
# max_range = np.array([x.max() - x.min(),
# y.max() - y.min(),
# z.max() - z.min()]).max() / 2.0
# mid_x = (x.max() + x.min()) * 0.5
# mid_y = (y.max() + y.min()) * 0.5
# mid_z = (z.max() + z.min()) * 0.5
# ax.set_xlim(mid_x - max_range, mid_x + max_range)
# ax.set_ylim(mid_y - max_range, mid_y + max_range)
# ax.set_zlim(mid_z - max_range, mid_z + max_range)
# # 隐藏刻度和标签
# ax.set_xticks([])
# ax.set_yticks([])
# ax.set_zticks([])
# ax.set_xlabel('')
# ax.set_ylabel('')
# ax.set_zlabel('')
# ax.grid(False)
# # 隐藏3D坐标轴的面板(pane)来去除轴的显示
# ax.xaxis.pane.set_visible(False)
# ax.yaxis.pane.set_visible(False)
# ax.zaxis.pane.set_visible(False)
# # 设置标题(如果需要显示标题)
# ax.set_title(title)
# plt.tight_layout()
# plt.show()
class Surfel:
def __init__(self, position, normal, radius=1.0, color=None):
"""
position: (x, y, z)
normal: (nx, ny, nz)
radius: scalar
color: (r, g, b) or None
"""
self.position = position
self.normal = normal
self.radius = radius
self.color = color
def __repr__(self):
return (f"Surfel(position={self.position}, "
f"normal={self.normal}, radius={self.radius}, "
f"color={self.color})")
class Octree:
def __init__(self, points, indices=None, bbox=None, max_points=10):
"""
构建八叉树:
- points: 所有点的 numpy 数组,形状为 (N, 3)
- indices: 当前节点中点的索引列表
- bbox: 当前节点的包围盒,形式为 (center, half_size),其中半径为正方体半边长
- max_points: 叶子节点允许的最大点数
"""
self.points = points
if indices is None:
indices = np.arange(points.shape[0])
self.indices = indices
# 如果没有给定包围盒,则计算所有点的包围盒,保证是一个正方体
if bbox is None:
min_bound = points.min(axis=0)
max_bound = points.max(axis=0)
center = (min_bound + max_bound) / 2
half_size = np.max(max_bound - min_bound) / 2
bbox = (center, half_size)
self.center, self.half_size = bbox
self.children = [] # 存储子节点
self.max_points = max_points
if len(self.indices) > self.max_points:
self.subdivide()
def subdivide(self):
"""将当前节点划分为8个子节点"""
cx, cy, cz = self.center
hs = self.half_size / 2
# 八个象限的偏移量
offsets = np.array([[dx, dy, dz] for dx in (-hs, hs)
for dy in (-hs, hs)
for dz in (-hs, hs)])
for offset in offsets:
child_center = self.center + offset
child_indices = []
# 检查每个点是否在子节点的包围盒内
for idx in self.indices:
p = self.points[idx]
if np.all(np.abs(p - child_center) <= hs):
child_indices.append(idx)
child_indices = np.array(child_indices)
if len(child_indices) > 0:
child = Octree(self.points, indices=child_indices, bbox=(child_center, hs), max_points=self.max_points)
self.children.append(child)
# 划分后,内部节点不再直接保存点索引
self.indices = None
def sphere_intersects_node(self, center, r):
"""
判断以center为球心, r为半径的球是否与当前节点的轴对齐包围盒相交。
算法:计算球心到盒子的距离(只考虑超出盒子边界的部分),若小于r,则相交。
"""
diff = np.abs(center - self.center)
max_diff = diff - self.half_size
max_diff = np.maximum(max_diff, 0)
dist_sq = np.sum(max_diff**2)
return dist_sq <= r*r
def query_ball_point(self, point, r):
"""
查询距离给定点 point 小于 r 的所有点索引。
"""
results = []
if not self.sphere_intersects_node(point, r):
return results
# 如果当前节点没有子节点,则为叶子节点
if len(self.children) == 0:
if self.indices is not None:
for idx in self.indices:
if np.linalg.norm(self.points[idx] - point) <= r:
results.append(idx)
return results
else:
for child in self.children:
results.extend(child.query_ball_point(point, r))
return results
def estimate_normal_from_pointmap(pointmap: torch.Tensor) -> torch.Tensor:
"""
Estimate surface normals from a 3D point map by computing cross products of
neighboring points, using PyTorch tensors.
Parameters
----------
pointmap : torch.Tensor
A PyTorch tensor of shape [H, W, 3] containing 3D points in camera coordinates.
Each point is represented as (X, Y, Z). This tensor can be on CPU or GPU.
Returns
-------
torch.Tensor
A PyTorch tensor of shape [H, W, 3] containing estimated surface normals.
Each normal is a unit vector (X, Y, Z).
Points where normals cannot be computed (e.g. boundaries) will be zero vectors.
"""
# pointmap is shape (H, W, 3)
h, w = pointmap.shape[:2]
device = pointmap.device # Keep the device (CPU/GPU) consistent
dtype = pointmap.dtype
# Initialize the normal map
normal_map = torch.zeros((h, w, 3), device=device, dtype=dtype)
for y in range(h):
for x in range(w):
# Check if neighbors are within bounds
if x+1 >= w or y+1 >= h:
continue
p_center = pointmap[y, x]
p_right = pointmap[y, x+1]
p_down = pointmap[y+1, x]
# Compute vectors
v1 = p_right - p_center
v2 = p_down - p_center
v1 = v1 / torch.linalg.norm(v1)
v2 = v2 / torch.linalg.norm(v2)
# Cross product in camera coordinates
n_c = torch.cross(v1, v2)
# n_c *= 1e10
# Compute norm of the normal vector
norm_len = torch.linalg.norm(n_c)
if norm_len < 1e-8:
continue
# Normalize and store
normal_map[y, x] = n_c / norm_len
return normal_map
def load_multiple_images(image_names, image_size=512, dtype=torch.float32):
images = load_images(image_names, size=image_size, force_1024=True, dtype=dtype)
img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # Just for reference
return images, img_ori
def load_initial_images(image_name):
images = load_images([image_name], size=512, force_1024=True)
img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # [H, W, 3], range [0,1]
if len(images) == 1:
images = [images[0], copy.deepcopy(images[0])]
images[1]['idx'] = 1
return images, img_ori
def merge_surfels(
new_surfels: list,
current_timestamp: str,
existing_surfels: list,
existing_surfel_to_timestamp: dict,
position_threshold: float = 0.025,
normal_threshold: float = 0.7,
max_points_per_node: int = 10 # 八叉树叶子节点允许的最大点数
):
"""
将新的 surfel 合并到已有 surfel 列表中,使用八叉树来加速空间查找。
Args:
new_surfels (list[Surfel]): 待合并的新 surfel 列表。
current_timestamp (str): 当前的时间戳。
existing_surfels (list[Surfel]): 已存在的 surfel 列表。
existing_surfel_to_timestamp (dict): 每个 surfel 索引到时间戳的映射。
position_threshold (float): 判断两个 surfel 空间距离是否足够近的阈值。
normal_threshold (float): 判断两个 surfel 法向是否对齐的阈值。
max_points_per_node (int): 构建八叉树时,每个叶子节点最大允许的点数。
Returns:
(list[Surfel], dict):
- 未能匹配的 surfel 列表,需要追加到已有 surfel 列表中。
- 更新后的 existing_surfel_to_timestamp 映射。
"""
# 安全检查
assert len(existing_surfels) == len(existing_surfel_to_timestamp), (
"existing_surfels 和 existing_surfel_to_timestamp 长度不匹配。"
)
# 构造已有 surfel 的位置和法向数组
positions = np.array([s.position for s in existing_surfels]) # Shape: (N, 3)
normals = np.array([s.normal for s in existing_surfels]) # Shape: (N, 3)
# 用于存储未匹配到已有 surfel 的新 surfel
filtered_surfels = []
merge_count = 0
for new_surfel in new_surfels:
is_merged = False
for idx in range(len(positions)):
if np.linalg.norm(positions[idx] - new_surfel.position) < position_threshold:
if np.dot(normals[idx], new_surfel.normal) > normal_threshold:
existing_surfel_to_timestamp[idx].append(current_timestamp)
is_merged = True
merge_count += 1
break
if not is_merged:
filtered_surfels.append(new_surfel)
# 返回未匹配的 surfel 列表及更新后的时间戳映射
print(f"merge_count: {merge_count}")
return filtered_surfels, existing_surfel_to_timestamp
def pointmap_to_surfels(pointmap: torch.Tensor,
focal_lengths: torch.Tensor,
depth_map: torch.Tensor,
poses: torch.Tensor, # shape: (4, 4)
radius_scale: float = 0.5,
depth_threshold: float = 1.0,
estimate_normals: bool = True):
surfels = []
if len(focal_lengths) == 2:
focal_lengths = torch.mean(focal_lengths, dim=0)
H, W = pointmap.shape[:2]
# 1) Estimate normals
if estimate_normals:
normal_map = estimate_normal_from_pointmap(pointmap)
else:
normal_map = torch.zeros_like(pointmap)
depth_remove_count = 0
for v in range(H-1):
for u in range(W-1):
if depth_map[v, u] > depth_threshold:
depth_remove_count += 1
continue
position = pointmap[v, u].detach().cpu().numpy() # in global coords
normal = normal_map[v, u].detach().cpu().numpy() # in global coords
depth = depth_map[v, u].detach().cpu().numpy() # in local coords
view_direction = position - poses[0:3, 3].detach().cpu().numpy()
view_direction = view_direction / np.linalg.norm(view_direction)
if np.dot(view_direction, normal) < 0:
normal = -normal
adjustment_value = 0.2 + 0.8 * np.abs(np.dot(view_direction, normal))
radius = (radius_scale * depth/focal_lengths/adjustment_value).detach().cpu().numpy()
surfels.append(Surfel(position, normal, radius))
print(f"depth_remove_count: {depth_remove_count}")
return surfels
def run_dust3r(input_images,
dust3r,
batch_size = 1,
niter = 1000,
lr = 0.01,
schedule = 'linear',
clean_pc = False,
focal_lengths = None,
poses = None,
device = 'cuda',
background_mask = None,
use_amp = False # <<< AMP CHANGE: add a flag to enable/disable AMP
):
# We wrap the entire inference and alignment in autocast so that
# forward passes and any internal backward passes happen in mixed precision.
with autocast(device_type='cuda', dtype=torch.float16, enabled=use_amp):
pairs = make_pairs(input_images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, dust3r, device, batch_size=batch_size)
mode = GlobalAlignerMode.PointCloudDifferentFocalOptimizer
scene = global_aligner(output, device=device, mode=mode)
if focal_lengths is not None:
scene.preset_focal(focal_lengths)
if poses is not None:
scene.preset_pose(poses)
if mode == GlobalAlignerMode.PointCloudDifferentFocalOptimizer:
# Depending on how dust3r internally does optimization,
# it may or may not require gradient scaling.
# If you need it, you can do something more manual with GradScaler.
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
else:
loss = None
# If you want to clean up the pointcloud after alignment
if clean_pc:
scene = scene.clean_pointcloud()
return scene, loss
if __name__ == "__main__":
load_image_size = 512
load_dtype = torch.float16
device = 'cuda'
model_path = "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"
selected_frame_paths = ["assets/jesus/jesus_0.jpg",
"assets/jesus/jesus_1.jpg",
"assets/jesus/jesus_2.jpg"
]
# pil_image = Image.open("./assets/radcliffe_camera_bg.png").resize((512, 288))
# r, g, b, a = pil_image.split()
# background_mask = a
# background_mask = (1 - torch.tensor(np.array(background_mask))).unsqueeze(0).repeat(2, 1, 1).bool()
all_surfels = []
surfel_to_timestamp = {}
dust3r = load_model(model_path, device=device)
dust3r.eval()
dust3r = dust3r.to(device)
dust3r = dust3r.half()
if len(selected_frame_paths) == 1:
selected_frame_paths = selected_frame_paths * 2
frame_images, frame_img_ori = load_multiple_images(selected_frame_paths,
image_size=load_image_size,
dtype=load_dtype)
scene, loss = run_dust3r(frame_images, dust3r, device=device, use_amp=True)
# --- 1) Extract outputs ---
# pointcloud shape: [N, H, W, 3]
shrink_factor = 0.15
pointcloud = torch.stack(scene.get_pts3d())
# poses shape: [N, 4, 4]
# optimized_poses = scene.get_im_poses()
# focal_lengths shape: [N]
focal_lengths = scene.get_focals()
# adjustion_transformation_matrix = SpatialConstructor.estimate_pose_alignment(optimized_poses, original_camera_poses) # optimized_poses -> original_camera_poses matrix
# adjusted_optimized_poses = adjustion_transformation_matrix @ optimized_poses
# --- 2) Resize pointcloud ---
# Permute for resizing -> [N, 3, H, W]
pointcloud = pointcloud.permute(0, 3, 1, 2)
# Resize using bilinear interpolation
pointcloud = F.interpolate(
pointcloud,
scale_factor=shrink_factor,
mode='bilinear'
)
# Permute back -> [N, H', W', 3]
pointcloud = pointcloud.permute(0, 2, 3, 1)[-1:]
# transform pointcloud
# pointcloud = torch.stack([SpatialConstructor.transform_pointmap(pointcloud[i], adjustion_transformation_matrix) for i in range(pointcloud.shape[0])])
rgbs = scene.imgs
rgbs = torch.tensor(np.array(rgbs))
rgbs = rgbs.permute(0, 3, 1, 2)
rgbs = F.interpolate(rgbs, scale_factor=shrink_factor, mode='bilinear')
rgbs = rgbs.permute(0, 2, 3, 1)[-1:]
visualize_pointcloud(pointcloud, rgbs, point_size=4)
# --- 3) Resize depth map ---
# depth_map shape: [N, H, W]
depth_map = torch.stack(scene.get_depthmaps())
# Add channel dimension -> [N, 1, H, W]
depth_map = depth_map.unsqueeze(1)
depth_map = F.interpolate(
depth_map,
scale_factor=shrink_factor,
mode='bilinear'
)
poses = scene.get_im_poses()[-1:]
# Remove channel dimension -> [N, H', W']
depth_map = depth_map.squeeze(1)[-1:]
for frame_idx in range(len(pointcloud)):
# if frame_idx > 1:
# break
# Create surfels for the current frame
surfels = pointmap_to_surfels(
pointmap=pointcloud[frame_idx],
focal_lengths=focal_lengths[frame_idx] * shrink_factor,
depth_map=depth_map[frame_idx],
poses=poses[frame_idx],
estimate_normals=True,
radius_scale=0.5,
depth_threshold=0.48
)
# Merge with existing surfels if not the first frame
if frame_idx > 0:
surfels, surfel_to_timestamp = merge_surfels(
new_surfels=surfels,
current_timestamp=frame_idx,
existing_surfels=all_surfels,
existing_surfel_to_timestamp=surfel_to_timestamp,
position_threshold=0.01,
normal_threshold=0.7
)
# Update timestamp mapping
num_surfels = len(surfels)
surfel_start_index = len(all_surfels)
for surfel_index in range(num_surfels):
# Each newly created surfel gets mapped to this frame index
# surfel_to_timestamp[surfel_start_index + surfel_index] = [frame_idx]
surfel_to_timestamp[surfel_start_index + surfel_index] = [2]
all_surfels.extend(surfels)
positions = np.array([s.position for s in all_surfels], dtype=np.float32)
normals = np.array([s.normal for s in all_surfels], dtype=np.float32)
radii = np.array([s.radius for s in all_surfels], dtype=np.float32)
colors = np.array([s.color for s in all_surfels], dtype=np.float32)
visualize_surfels(all_surfels)
# np.savez(f"./surfels_added_first2.npz",
# positions=positions,
# normals=normals,
# radii=radii,
# colors=colors)
# with open("surfel_to_timestamp_first2.json", "w") as f:
# json.dump(surfel_to_timestamp, f)
np.savez(f"./surfels_added_only3.npz",
positions=positions,
normals=normals,
radii=radii,
colors=colors)
with open("surfel_to_timestamp_only3.json", "w") as f:
json.dump(surfel_to_timestamp, f)
stop = 1