Spaces:
Running
on
L4
Running
on
L4
File size: 30,745 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import sys
import json
import numpy as np
from PIL import Image
from torch.amp import autocast
import torch
import copy
from torch.nn import functional as F
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
sys.path.append("./extern/dust3r")
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
def visualize_surfels(
surfels,
draw_normals=False,
normal_scale=20,
disk_resolution=16,
disk_alpha=0.5
):
"""
Visualize surfels as 2D disks oriented by their normals in 3D using matplotlib.
Args:
surfels (list of Surfel): Each Surfel has at least:
- position: (x, y, z)
- normal: (nx, ny, nz)
- radius: scalar
- color: (R, G, B) in [0..255] (optional)
draw_normals (bool): If True, draws the surfel normals as quiver arrows.
normal_scale (float): Scale factor for the normal arrows.
disk_resolution (int): Number of segments to approximate each disk.
disk_alpha (float): Alpha (transparency) for the filled disks.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Prepare arrays for optional quiver (if draw_normals=True)
positions = []
normals = []
# We'll accumulate 3D polygons in a list for Poly3DCollection
polygons = []
polygon_colors = []
for s in surfels:
# --- Extract surfel data ---
position = s.position
normal = s.normal
radius = s.radius
if isinstance(position, torch.Tensor):
x, y, z = position.detach().cpu().numpy()
nx, ny, nz = normal.detach().cpu().numpy()
radius = radius.detach().cpu().numpy()
else:
x, y, z = position
nx, ny, nz = normal
radius = radius
# Convert color from [0..255] to [0..1], or use default
if s.color is None:
color = (0.2, 0.6, 1.0) # Light blue
else:
r, g, b = s.color
color = (r/255.0, g/255.0, b/255.0)
# --- Build local coordinate axes for the disk ---
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
# Skip degenerate normals to avoid nan
if norm_len < 1e-12:
continue
normal /= norm_len
# Pick an 'up' vector that is not too close to the normal
# so we can build a tangent plane
up = np.array([0, 0, 1], dtype=float)
if abs(normal.dot(up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
# xAxis = normal x up
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
# yAxis = normal x xAxis
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# --- Create a circle of 'disk_resolution' segments in local 2D coords ---
angles = np.linspace(0, 2*np.pi, disk_resolution, endpoint=False)
circle_points_3d = []
for theta in angles:
# local 2D circle: (r*cosθ, r*sinθ)
px = radius * np.cos(theta)
py = radius * np.sin(theta)
# transform to 3D world space: position + px*xAxis + py*yAxis
world_pt = np.array([x, y, z]) + px * xAxis + py * yAxis
circle_points_3d.append(world_pt)
# We have a list of [x, y, z]. For a filled polygon, Poly3DCollection
# wants them as a single Nx3 array.
circle_points_3d = np.array(circle_points_3d)
polygons.append(circle_points_3d)
polygon_colors.append(color)
# Collect positions and normals for quiver (if used)
positions.append([x, y, z])
normals.append(normal)
# --- Draw the disks as polygons ---
poly_collection = Poly3DCollection(
polygons,
facecolors=polygon_colors,
edgecolors='k', # black edge
linewidths=0.5,
alpha=disk_alpha
)
ax.add_collection3d(poly_collection)
# --- Optionally draw normal vectors (quiver) ---
if draw_normals and len(positions) > 0:
X = [p[0] for p in positions]
Y = [p[1] for p in positions]
Z = [p[2] for p in positions]
Nx = [n[0] for n in normals]
Ny = [n[1] for n in normals]
Nz = [n[2] for n in normals]
# Note: If your scene is large, you may want to increase `length`.
ax.quiver(
X, Y, Z,
Nx, Ny, Nz,
length=normal_scale,
color='red',
normalize=True
)
# --- Axis labels, aspect ratio, etc. ---
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
try:
ax.set_box_aspect((1, 1, 1))
except AttributeError:
pass # older MPL versions
plt.title("Surfels as Disks (Oriented by Normal)")
plt.show()
def visualize_pointcloud(
points,
colors=None,
title='Point Cloud',
point_size=1,
alpha=1.0,
bg_color=(240/255, 223/255, 223/255) # 新增参数,默认白色 (1,1,1)
):
"""
可视化3D点云,同时支持每个点的RGB或RGBA颜色,并保证x, y, z三个轴等比例缩放。
参数
----------
points : np.ndarray 或 torch.Tensor
形状为 [N, 3] 的数组或张量,每行表示一个3D点 (x, y, z)。
colors : None, str, 或 np.ndarray
- 如果为 None,则使用默认颜色 'blue'。
- 如果为字符串,则所有点均使用该颜色。
- 如果为数组,则形状应为 [N, 3] 或 [N, 4],表示每个点的颜色,值的范围应为 [0, 1](若为浮点数)。
title : str, 可选
图像标题,默认 'Point Cloud'。
point_size : float, 可选
点的大小,默认 1。
alpha : float, 可选
点的整体透明度,默认 1.0。
bg_color : tuple, 可选
背景颜色,格式为 (r, g, b),每个值的范围为 [0, 1],默认为白色 (1.0, 1.0, 1.0)。
示例
--------
>>> import numpy as np
>>> pts = np.random.rand(1000, 3)
>>> cols = np.random.rand(1000, 3)
>>> visualize_pointcloud(pts, colors=cols, title="随机点云", bg_color=(0.2, 0.2, 0.3))
"""
# 如果是 Torch 张量,则转换为 NumPy 数组
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(colors, torch.Tensor):
colors = colors.detach().cpu().numpy()
# 如果点云或颜色数据维度过高,则展平
if len(points.shape) > 2:
points = points.reshape(-1, 3)
if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
colors = colors.reshape(-1, colors.shape[-1])
# 验证点云形状
if points.shape[1] != 3:
raise ValueError("`points` array must have shape [N, 3].")
# 处理颜色参数
if colors is None:
colors = 'blue'
elif isinstance(colors, np.ndarray):
colors = np.asarray(colors)
if colors.shape[0] != points.shape[0]:
raise ValueError("Colors array length must match the number of points.")
if colors.shape[1] not in [3, 4]:
raise ValueError("Colors array must have shape [N, 3] or [N, 4].")
# 验证背景颜色参数
if not isinstance(bg_color, tuple) or len(bg_color) != 3:
raise ValueError("Background color must be a tuple of (r, g, b) with values between 0 and 1.")
# 提取坐标
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
# 创建图像,并设置自定义背景颜色
fig = plt.figure(figsize=(8, 6), facecolor=bg_color)
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor(bg_color)
# 绘制散点图
ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# 设置等比例缩放
max_range = np.array([x.max() - x.min(),
y.max() - y.min(),
z.max() - z.min()]).max() / 2.0
mid_x = (x.max() + x.min()) * 0.5
mid_y = (y.max() + y.min()) * 0.5
mid_z = (z.max() + z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
# 隐藏刻度和标签
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_xlabel('')
ax.set_ylabel('')
ax.set_zlabel('')
ax.grid(False)
# 隐藏3D坐标轴的面板(pane)来去除轴的显示
ax.xaxis.pane.set_visible(False)
ax.yaxis.pane.set_visible(False)
ax.zaxis.pane.set_visible(False)
# 设置标题(如果需要显示标题)
ax.set_title(title)
plt.tight_layout()
plt.show()
# def visualize_pointcloud(
# points,
# colors=None,
# title='Point Cloud',
# point_size=1,
# alpha=1.0
# ):
# """
# 可视化3D点云,同时支持每个点的RGB或RGBA颜色,并保证x, y, z三个轴等比例缩放。
# 参数
# ----------
# points : np.ndarray 或 torch.Tensor
# 形状为 [N, 3] 的数组或张量,每行表示一个3D点 (x, y, z)。
# colors : None, str, 或 np.ndarray
# - 如果为 None,则使用默认颜色 'blue'。
# - 如果为字符串,则所有点均使用该颜色。
# - 如果为数组,则形状应为 [N, 3] 或 [N, 4],表示每个点的颜色,值的范围应为 [0, 1](若为浮点数)。
# title : str, 可选
# 图像标题,默认 'Point Cloud'。
# point_size : float, 可选
# 点的大小,默认 1。
# alpha : float, 可选
# 点的整体透明度,默认 1.0。
# 示例
# --------
# >>> import numpy as np
# >>> pts = np.random.rand(1000, 3)
# >>> cols = np.random.rand(1000, 3)
# >>> visualize_pointcloud(pts, colors=cols, title="随机点云")
# """
# # 如果是 Torch 张量,则转换为 NumPy 数组
# if isinstance(points, torch.Tensor):
# points = points.detach().cpu().numpy()
# if isinstance(colors, torch.Tensor):
# colors = colors.detach().cpu().numpy()
# # 如果点云或颜色数据维度过高,则展平
# if len(points.shape) > 2:
# points = points.reshape(-1, 3)
# if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
# colors = colors.reshape(-1, colors.shape[-1])
# # 验证点云形状
# if points.shape[1] != 3:
# raise ValueError("`points` array must have shape [N, 3].")
# # 处理颜色参数
# if colors is None:
# colors = 'blue'
# elif isinstance(colors, np.ndarray):
# colors = np.asarray(colors)
# if colors.shape[0] != points.shape[0]:
# raise ValueError("Colors array length must match the number of points.")
# if colors.shape[1] not in [3, 4]:
# raise ValueError("Colors array must have shape [N, 3] or [N, 4].")
# # 提取坐标
# x = points[:, 0]
# y = points[:, 1]
# z = points[:, 2]
# # 创建图像,并设置背景为白色
# fig = plt.figure(figsize=(8, 6), facecolor='white')
# ax = fig.add_subplot(111, projection='3d')
# ax.set_facecolor('white')
# # 绘制散点图
# ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# # 设置等比例缩放
# max_range = np.array([x.max() - x.min(),
# y.max() - y.min(),
# z.max() - z.min()]).max() / 2.0
# mid_x = (x.max() + x.min()) * 0.5
# mid_y = (y.max() + y.min()) * 0.5
# mid_z = (z.max() + z.min()) * 0.5
# ax.set_xlim(mid_x - max_range, mid_x + max_range)
# ax.set_ylim(mid_y - max_range, mid_y + max_range)
# ax.set_zlim(mid_z - max_range, mid_z + max_range)
# # 隐藏刻度和标签
# ax.set_xticks([])
# ax.set_yticks([])
# ax.set_zticks([])
# ax.set_xlabel('')
# ax.set_ylabel('')
# ax.set_zlabel('')
# ax.grid(False)
# # 隐藏3D坐标轴的面板(pane)来去除轴的显示
# ax.xaxis.pane.set_visible(False)
# ax.yaxis.pane.set_visible(False)
# ax.zaxis.pane.set_visible(False)
# # 设置标题(如果需要显示标题)
# ax.set_title(title)
# plt.tight_layout()
# plt.show()
class Surfel:
def __init__(self, position, normal, radius=1.0, color=None):
"""
position: (x, y, z)
normal: (nx, ny, nz)
radius: scalar
color: (r, g, b) or None
"""
self.position = position
self.normal = normal
self.radius = radius
self.color = color
def __repr__(self):
return (f"Surfel(position={self.position}, "
f"normal={self.normal}, radius={self.radius}, "
f"color={self.color})")
class Octree:
def __init__(self, points, indices=None, bbox=None, max_points=10):
"""
构建八叉树:
- points: 所有点的 numpy 数组,形状为 (N, 3)
- indices: 当前节点中点的索引列表
- bbox: 当前节点的包围盒,形式为 (center, half_size),其中半径为正方体半边长
- max_points: 叶子节点允许的最大点数
"""
self.points = points
if indices is None:
indices = np.arange(points.shape[0])
self.indices = indices
# 如果没有给定包围盒,则计算所有点的包围盒,保证是一个正方体
if bbox is None:
min_bound = points.min(axis=0)
max_bound = points.max(axis=0)
center = (min_bound + max_bound) / 2
half_size = np.max(max_bound - min_bound) / 2
bbox = (center, half_size)
self.center, self.half_size = bbox
self.children = [] # 存储子节点
self.max_points = max_points
if len(self.indices) > self.max_points:
self.subdivide()
def subdivide(self):
"""将当前节点划分为8个子节点"""
cx, cy, cz = self.center
hs = self.half_size / 2
# 八个象限的偏移量
offsets = np.array([[dx, dy, dz] for dx in (-hs, hs)
for dy in (-hs, hs)
for dz in (-hs, hs)])
for offset in offsets:
child_center = self.center + offset
child_indices = []
# 检查每个点是否在子节点的包围盒内
for idx in self.indices:
p = self.points[idx]
if np.all(np.abs(p - child_center) <= hs):
child_indices.append(idx)
child_indices = np.array(child_indices)
if len(child_indices) > 0:
child = Octree(self.points, indices=child_indices, bbox=(child_center, hs), max_points=self.max_points)
self.children.append(child)
# 划分后,内部节点不再直接保存点索引
self.indices = None
def sphere_intersects_node(self, center, r):
"""
判断以center为球心, r为半径的球是否与当前节点的轴对齐包围盒相交。
算法:计算球心到盒子的距离(只考虑超出盒子边界的部分),若小于r,则相交。
"""
diff = np.abs(center - self.center)
max_diff = diff - self.half_size
max_diff = np.maximum(max_diff, 0)
dist_sq = np.sum(max_diff**2)
return dist_sq <= r*r
def query_ball_point(self, point, r):
"""
查询距离给定点 point 小于 r 的所有点索引。
"""
results = []
if not self.sphere_intersects_node(point, r):
return results
# 如果当前节点没有子节点,则为叶子节点
if len(self.children) == 0:
if self.indices is not None:
for idx in self.indices:
if np.linalg.norm(self.points[idx] - point) <= r:
results.append(idx)
return results
else:
for child in self.children:
results.extend(child.query_ball_point(point, r))
return results
def estimate_normal_from_pointmap(pointmap: torch.Tensor) -> torch.Tensor:
"""
Estimate surface normals from a 3D point map by computing cross products of
neighboring points, using PyTorch tensors.
Parameters
----------
pointmap : torch.Tensor
A PyTorch tensor of shape [H, W, 3] containing 3D points in camera coordinates.
Each point is represented as (X, Y, Z). This tensor can be on CPU or GPU.
Returns
-------
torch.Tensor
A PyTorch tensor of shape [H, W, 3] containing estimated surface normals.
Each normal is a unit vector (X, Y, Z).
Points where normals cannot be computed (e.g. boundaries) will be zero vectors.
"""
# pointmap is shape (H, W, 3)
h, w = pointmap.shape[:2]
device = pointmap.device # Keep the device (CPU/GPU) consistent
dtype = pointmap.dtype
# Initialize the normal map
normal_map = torch.zeros((h, w, 3), device=device, dtype=dtype)
for y in range(h):
for x in range(w):
# Check if neighbors are within bounds
if x+1 >= w or y+1 >= h:
continue
p_center = pointmap[y, x]
p_right = pointmap[y, x+1]
p_down = pointmap[y+1, x]
# Compute vectors
v1 = p_right - p_center
v2 = p_down - p_center
v1 = v1 / torch.linalg.norm(v1)
v2 = v2 / torch.linalg.norm(v2)
# Cross product in camera coordinates
n_c = torch.cross(v1, v2)
# n_c *= 1e10
# Compute norm of the normal vector
norm_len = torch.linalg.norm(n_c)
if norm_len < 1e-8:
continue
# Normalize and store
normal_map[y, x] = n_c / norm_len
return normal_map
def load_multiple_images(image_names, image_size=512, dtype=torch.float32):
images = load_images(image_names, size=image_size, force_1024=True, dtype=dtype)
img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # Just for reference
return images, img_ori
def load_initial_images(image_name):
images = load_images([image_name], size=512, force_1024=True)
img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # [H, W, 3], range [0,1]
if len(images) == 1:
images = [images[0], copy.deepcopy(images[0])]
images[1]['idx'] = 1
return images, img_ori
def merge_surfels(
new_surfels: list,
current_timestamp: str,
existing_surfels: list,
existing_surfel_to_timestamp: dict,
position_threshold: float = 0.025,
normal_threshold: float = 0.7,
max_points_per_node: int = 10 # 八叉树叶子节点允许的最大点数
):
"""
将新的 surfel 合并到已有 surfel 列表中,使用八叉树来加速空间查找。
Args:
new_surfels (list[Surfel]): 待合并的新 surfel 列表。
current_timestamp (str): 当前的时间戳。
existing_surfels (list[Surfel]): 已存在的 surfel 列表。
existing_surfel_to_timestamp (dict): 每个 surfel 索引到时间戳的映射。
position_threshold (float): 判断两个 surfel 空间距离是否足够近的阈值。
normal_threshold (float): 判断两个 surfel 法向是否对齐的阈值。
max_points_per_node (int): 构建八叉树时,每个叶子节点最大允许的点数。
Returns:
(list[Surfel], dict):
- 未能匹配的 surfel 列表,需要追加到已有 surfel 列表中。
- 更新后的 existing_surfel_to_timestamp 映射。
"""
# 安全检查
assert len(existing_surfels) == len(existing_surfel_to_timestamp), (
"existing_surfels 和 existing_surfel_to_timestamp 长度不匹配。"
)
# 构造已有 surfel 的位置和法向数组
positions = np.array([s.position for s in existing_surfels]) # Shape: (N, 3)
normals = np.array([s.normal for s in existing_surfels]) # Shape: (N, 3)
# 用于存储未匹配到已有 surfel 的新 surfel
filtered_surfels = []
merge_count = 0
for new_surfel in new_surfels:
is_merged = False
for idx in range(len(positions)):
if np.linalg.norm(positions[idx] - new_surfel.position) < position_threshold:
if np.dot(normals[idx], new_surfel.normal) > normal_threshold:
existing_surfel_to_timestamp[idx].append(current_timestamp)
is_merged = True
merge_count += 1
break
if not is_merged:
filtered_surfels.append(new_surfel)
# 返回未匹配的 surfel 列表及更新后的时间戳映射
print(f"merge_count: {merge_count}")
return filtered_surfels, existing_surfel_to_timestamp
def pointmap_to_surfels(pointmap: torch.Tensor,
focal_lengths: torch.Tensor,
depth_map: torch.Tensor,
poses: torch.Tensor, # shape: (4, 4)
radius_scale: float = 0.5,
depth_threshold: float = 1.0,
estimate_normals: bool = True):
surfels = []
if len(focal_lengths) == 2:
focal_lengths = torch.mean(focal_lengths, dim=0)
H, W = pointmap.shape[:2]
# 1) Estimate normals
if estimate_normals:
normal_map = estimate_normal_from_pointmap(pointmap)
else:
normal_map = torch.zeros_like(pointmap)
depth_remove_count = 0
for v in range(H-1):
for u in range(W-1):
if depth_map[v, u] > depth_threshold:
depth_remove_count += 1
continue
position = pointmap[v, u].detach().cpu().numpy() # in global coords
normal = normal_map[v, u].detach().cpu().numpy() # in global coords
depth = depth_map[v, u].detach().cpu().numpy() # in local coords
view_direction = position - poses[0:3, 3].detach().cpu().numpy()
view_direction = view_direction / np.linalg.norm(view_direction)
if np.dot(view_direction, normal) < 0:
normal = -normal
adjustment_value = 0.2 + 0.8 * np.abs(np.dot(view_direction, normal))
radius = (radius_scale * depth/focal_lengths/adjustment_value).detach().cpu().numpy()
surfels.append(Surfel(position, normal, radius))
print(f"depth_remove_count: {depth_remove_count}")
return surfels
def run_dust3r(input_images,
dust3r,
batch_size = 1,
niter = 1000,
lr = 0.01,
schedule = 'linear',
clean_pc = False,
focal_lengths = None,
poses = None,
device = 'cuda',
background_mask = None,
use_amp = False # <<< AMP CHANGE: add a flag to enable/disable AMP
):
# We wrap the entire inference and alignment in autocast so that
# forward passes and any internal backward passes happen in mixed precision.
with autocast(device_type='cuda', dtype=torch.float16, enabled=use_amp):
pairs = make_pairs(input_images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, dust3r, device, batch_size=batch_size)
mode = GlobalAlignerMode.PointCloudDifferentFocalOptimizer
scene = global_aligner(output, device=device, mode=mode)
if focal_lengths is not None:
scene.preset_focal(focal_lengths)
if poses is not None:
scene.preset_pose(poses)
if mode == GlobalAlignerMode.PointCloudDifferentFocalOptimizer:
# Depending on how dust3r internally does optimization,
# it may or may not require gradient scaling.
# If you need it, you can do something more manual with GradScaler.
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
else:
loss = None
# If you want to clean up the pointcloud after alignment
if clean_pc:
scene = scene.clean_pointcloud()
return scene, loss
if __name__ == "__main__":
load_image_size = 512
load_dtype = torch.float16
device = 'cuda'
model_path = "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"
selected_frame_paths = ["assets/jesus/jesus_0.jpg",
"assets/jesus/jesus_1.jpg",
"assets/jesus/jesus_2.jpg"
]
# pil_image = Image.open("./assets/radcliffe_camera_bg.png").resize((512, 288))
# r, g, b, a = pil_image.split()
# background_mask = a
# background_mask = (1 - torch.tensor(np.array(background_mask))).unsqueeze(0).repeat(2, 1, 1).bool()
all_surfels = []
surfel_to_timestamp = {}
dust3r = load_model(model_path, device=device)
dust3r.eval()
dust3r = dust3r.to(device)
dust3r = dust3r.half()
if len(selected_frame_paths) == 1:
selected_frame_paths = selected_frame_paths * 2
frame_images, frame_img_ori = load_multiple_images(selected_frame_paths,
image_size=load_image_size,
dtype=load_dtype)
scene, loss = run_dust3r(frame_images, dust3r, device=device, use_amp=True)
# --- 1) Extract outputs ---
# pointcloud shape: [N, H, W, 3]
shrink_factor = 0.15
pointcloud = torch.stack(scene.get_pts3d())
# poses shape: [N, 4, 4]
# optimized_poses = scene.get_im_poses()
# focal_lengths shape: [N]
focal_lengths = scene.get_focals()
# adjustion_transformation_matrix = SpatialConstructor.estimate_pose_alignment(optimized_poses, original_camera_poses) # optimized_poses -> original_camera_poses matrix
# adjusted_optimized_poses = adjustion_transformation_matrix @ optimized_poses
# --- 2) Resize pointcloud ---
# Permute for resizing -> [N, 3, H, W]
pointcloud = pointcloud.permute(0, 3, 1, 2)
# Resize using bilinear interpolation
pointcloud = F.interpolate(
pointcloud,
scale_factor=shrink_factor,
mode='bilinear'
)
# Permute back -> [N, H', W', 3]
pointcloud = pointcloud.permute(0, 2, 3, 1)[-1:]
# transform pointcloud
# pointcloud = torch.stack([SpatialConstructor.transform_pointmap(pointcloud[i], adjustion_transformation_matrix) for i in range(pointcloud.shape[0])])
rgbs = scene.imgs
rgbs = torch.tensor(np.array(rgbs))
rgbs = rgbs.permute(0, 3, 1, 2)
rgbs = F.interpolate(rgbs, scale_factor=shrink_factor, mode='bilinear')
rgbs = rgbs.permute(0, 2, 3, 1)[-1:]
visualize_pointcloud(pointcloud, rgbs, point_size=4)
# --- 3) Resize depth map ---
# depth_map shape: [N, H, W]
depth_map = torch.stack(scene.get_depthmaps())
# Add channel dimension -> [N, 1, H, W]
depth_map = depth_map.unsqueeze(1)
depth_map = F.interpolate(
depth_map,
scale_factor=shrink_factor,
mode='bilinear'
)
poses = scene.get_im_poses()[-1:]
# Remove channel dimension -> [N, H', W']
depth_map = depth_map.squeeze(1)[-1:]
for frame_idx in range(len(pointcloud)):
# if frame_idx > 1:
# break
# Create surfels for the current frame
surfels = pointmap_to_surfels(
pointmap=pointcloud[frame_idx],
focal_lengths=focal_lengths[frame_idx] * shrink_factor,
depth_map=depth_map[frame_idx],
poses=poses[frame_idx],
estimate_normals=True,
radius_scale=0.5,
depth_threshold=0.48
)
# Merge with existing surfels if not the first frame
if frame_idx > 0:
surfels, surfel_to_timestamp = merge_surfels(
new_surfels=surfels,
current_timestamp=frame_idx,
existing_surfels=all_surfels,
existing_surfel_to_timestamp=surfel_to_timestamp,
position_threshold=0.01,
normal_threshold=0.7
)
# Update timestamp mapping
num_surfels = len(surfels)
surfel_start_index = len(all_surfels)
for surfel_index in range(num_surfels):
# Each newly created surfel gets mapped to this frame index
# surfel_to_timestamp[surfel_start_index + surfel_index] = [frame_idx]
surfel_to_timestamp[surfel_start_index + surfel_index] = [2]
all_surfels.extend(surfels)
positions = np.array([s.position for s in all_surfels], dtype=np.float32)
normals = np.array([s.normal for s in all_surfels], dtype=np.float32)
radii = np.array([s.radius for s in all_surfels], dtype=np.float32)
colors = np.array([s.color for s in all_surfels], dtype=np.float32)
visualize_surfels(all_surfels)
# np.savez(f"./surfels_added_first2.npz",
# positions=positions,
# normals=normals,
# radii=radii,
# colors=colors)
# with open("surfel_to_timestamp_first2.json", "w") as f:
# json.dump(surfel_to_timestamp, f)
np.savez(f"./surfels_added_only3.npz",
positions=positions,
normals=normals,
radii=radii,
colors=colors)
with open("surfel_to_timestamp_only3.json", "w") as f:
json.dump(surfel_to_timestamp, f)
stop = 1 |