File size: 9,877 Bytes
fbcecb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456f75c
fbcecb4
 
 
456f75c
fbcecb4
 
 
3f116c7
b980c02
 
 
 
3f116c7
d88b078
af2e06d
 
 
3f116c7
 
fbcecb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import subprocess
subprocess.run('pip install -e .', shell=True)

print("Installed the repo!")

# GLIDE imports
from typing import Tuple

from IPython.display import display
from PIL import Image
import numpy as np
import torch as th
import torch.nn.functional as F

from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler
)

# gradio app imports
import gradio as gr

from torchvision.transforms import ToTensor, ToPILImage
image_to_tensor = ToTensor()
tensor_to_image = ToPILImage()

# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

# Create base model.
options = model_and_diffusion_defaults()
options['inpaint'] = True
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base-inpaint', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))

# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['inpaint'] = True
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample-inpaint', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))

# Sampling parameters
batch_size = 1
guidance_scale = 5.0

# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997

# Create an classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
    half = x_t[: len(x_t) // 2]
    combined = th.cat([half, half], dim=0)
    model_out = model(combined, ts, **kwargs)
    eps, rest = model_out[:, :3], model_out[:, 3:]
    cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
    eps = th.cat([half_eps, half_eps], dim=0)
    return th.cat([eps, rest], dim=1)

def denoised_fn(x_start):
    # Force the model to have the exact right x_start predictions
    # for the part of the image which is known.
    return (
        x_start * (1 - model_kwargs['inpaint_mask'])
        + model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']
    )

def show_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    return Image.fromarray(reshaped.numpy())

def read_image(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:
    pil_img = Image.open(path).convert('RGB')
    pil_img = pil_img.resize((size, size), resample=Image.BICUBIC)
    img = np.array(pil_img)
    return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1

def pil_to_numpy(pil_img: Image) -> Tuple[th.Tensor, th.Tensor]:
    img = np.array(pil_img)
    return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1

model_kwargs = dict()
def inpaint(input_img, input_img_with_mask, prompt):

    print(prompt)

    # Save as png for later mask detection :)
    input_img_256 = input_img.convert('RGB').resize((256, 256), resample=Image.BICUBIC)
    input_img_64 = input_img.convert('RGB').resize((64, 64), resample=Image.BICUBIC)

    # Source image we are inpainting
    source_image_256 = pil_to_numpy(input_img_256)
    source_image_64 = pil_to_numpy(input_img_64)

    # Since gradio doesn't supply which pixels were drawn, we need to find it ourselves!
    # Assuming that all black pixels are meant for inpainting.
    input_img_with_mask_64 = input_img_with_mask.convert('L').resize((64, 64), resample=Image.BICUBIC)
    gray_scale_source_image = image_to_tensor(input_img_with_mask_64)
    source_mask_64 = (gray_scale_source_image!=0).float()
    source_mask_64_img = tensor_to_image(source_mask_64)

    # The mask should always be a boolean 64x64 mask, and then we
    # can upsample it for the second stage.
    source_mask_64 = source_mask_64.unsqueeze(0)
    source_mask_256 = F.interpolate(source_mask_64, (256, 256), mode='nearest')


    ##############################
    # Sample from the base model #
    ##############################

    # Create the text tokens to feed to the model.
    tokens = model.tokenizer.encode(prompt)
    tokens, mask = model.tokenizer.padded_tokens_and_mask(
        tokens, options['text_ctx']
    )

    # Create the classifier-free guidance tokens (empty)
    full_batch_size = batch_size * 2
    uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
        [], options['text_ctx']
    )

    # Pack the tokens together into model kwargs.
    global model_kwargs
    model_kwargs = dict(
        tokens=th.tensor(
            [tokens] * batch_size + [uncond_tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size + [uncond_mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),

        # Masked inpainting image
        inpaint_image=(source_image_64 * source_mask_64).repeat(full_batch_size, 1, 1, 1).to(device),
        inpaint_mask=source_mask_64.repeat(full_batch_size, 1, 1, 1).to(device),
    )

    # Sample from the base model.
    model.del_cache()
    samples = diffusion.p_sample_loop(
        model_fn,
        (full_batch_size, 3, options["image_size"], options["image_size"]),
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
        denoised_fn=denoised_fn,
    )[:batch_size]
    model.del_cache()

    ##############################
    # Upsample the 64x64 samples #
    ##############################

    tokens = model_up.tokenizer.encode(prompt)
    tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
        tokens, options_up['text_ctx']
    )

    # Create the model conditioning dict.
    model_kwargs = dict(
        # Low-res image to upsample.
        low_res=((samples+1)*127.5).round()/127.5 - 1,

        # Text tokens
        tokens=th.tensor(
            [tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),

        # Masked inpainting image.
        inpaint_image=(source_image_256 * source_mask_256).repeat(batch_size, 1, 1, 1).to(device),
        inpaint_mask=source_mask_256.repeat(batch_size, 1, 1, 1).to(device),
    )

    # Sample from the base model.
    model_up.del_cache()
    up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
    up_samples = diffusion_up.p_sample_loop(
        model_up,
        up_shape,
        noise=th.randn(up_shape, device=device) * upsample_temp,
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
        denoised_fn=denoised_fn,
    )[:batch_size]
    model_up.del_cache()

    return source_mask_64_img, show_images(up_samples)

gradio_inputs = [gr.inputs.Image(type='pil',
                                 label="Input Image"),
                 gr.inputs.Image(type='pil',
                                 label="Input Image With Mask"),
                 gr.inputs.Textbox(label='Conditional Text to Inpaint')]

# gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)')]

gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)'),
                 gr.outputs.Image(label='Inpainted Image')]
examples = [['grass.png', 'grass_with_mask.png', 'a corgi in a field']]

title = "GLIDE Inpainting"

description = "[WARNING: Queue times may take 4-6 minutes per person if there's no GPU! If there is a GPU, it'll take around 60 seconds] Using GLIDE to inpaint black regions of an input image! Instructions: 1) For the 'Input Image', upload an image. 2) For the 'Input Image with Mask', draw a black-colored mask (either manually with something like Paint, or by using gradio's built-in image editor & add a black-colored shape) IT MUST BE BLACK COLOR, but doesn't have to be rectangular! This is because it auto-detects the mask based on 0 (black) pixel values! 3) For the Conditional Text, type something you'd like to see the black region get filled in with :)"

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741' target='_blank'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im' target='_blank'>Github Repo</a> | <img src='https://visitor-badge.glitch.me/badge?page_id=epoching_glide_inpaint' alt='visitor badge'></p>"

#iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
#                     outputs=gradio_outputs,
#                     examples=examples, title=title,
#                     description=description, article=article,
#                     enable_queue=True)
                     
iface = gr.Interface(fn=inpaint, 
                     inputs=gradio_inputs,   
                     outputs=gradio_outputs,
                     article=article,
                     enable_queue=True)
                                          
iface.launch()