Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
subprocess.run('pip install -e .', shell=True)
|
3 |
+
|
4 |
+
print("Installed the repo!")
|
5 |
+
|
6 |
+
# GLIDE imports
|
7 |
+
from typing import Tuple
|
8 |
+
|
9 |
+
from IPython.display import display
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
import torch as th
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from glide_text2im.download import load_checkpoint
|
16 |
+
from glide_text2im.model_creation import (
|
17 |
+
create_model_and_diffusion,
|
18 |
+
model_and_diffusion_defaults,
|
19 |
+
model_and_diffusion_defaults_upsampler
|
20 |
+
)
|
21 |
+
|
22 |
+
# gradio app imports
|
23 |
+
import gradio as gr
|
24 |
+
|
25 |
+
from torchvision.transforms import ToTensor, ToPILImage
|
26 |
+
image_to_tensor = ToTensor()
|
27 |
+
tensor_to_image = ToPILImage()
|
28 |
+
|
29 |
+
# This notebook supports both CPU and GPU.
|
30 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
31 |
+
# On a GPU, it should be under a minute.
|
32 |
+
|
33 |
+
has_cuda = th.cuda.is_available()
|
34 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
35 |
+
|
36 |
+
# Create base model.
|
37 |
+
options = model_and_diffusion_defaults()
|
38 |
+
options['inpaint'] = True
|
39 |
+
options['use_fp16'] = has_cuda
|
40 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
41 |
+
model, diffusion = create_model_and_diffusion(**options)
|
42 |
+
model.eval()
|
43 |
+
if has_cuda:
|
44 |
+
model.convert_to_fp16()
|
45 |
+
model.to(device)
|
46 |
+
model.load_state_dict(load_checkpoint('base-inpaint', device))
|
47 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
48 |
+
|
49 |
+
# Create upsampler model.
|
50 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
51 |
+
options_up['inpaint'] = True
|
52 |
+
options_up['use_fp16'] = has_cuda
|
53 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
54 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
55 |
+
model_up.eval()
|
56 |
+
if has_cuda:
|
57 |
+
model_up.convert_to_fp16()
|
58 |
+
model_up.to(device)
|
59 |
+
model_up.load_state_dict(load_checkpoint('upsample-inpaint', device))
|
60 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
61 |
+
|
62 |
+
# Sampling parameters
|
63 |
+
batch_size = 1
|
64 |
+
guidance_scale = 5.0
|
65 |
+
|
66 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
67 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
68 |
+
upsample_temp = 0.997
|
69 |
+
|
70 |
+
# Create an classifier-free guidance sampling function
|
71 |
+
def model_fn(x_t, ts, **kwargs):
|
72 |
+
half = x_t[: len(x_t) // 2]
|
73 |
+
combined = th.cat([half, half], dim=0)
|
74 |
+
model_out = model(combined, ts, **kwargs)
|
75 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
76 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
77 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
78 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
79 |
+
return th.cat([eps, rest], dim=1)
|
80 |
+
|
81 |
+
def denoised_fn(x_start):
|
82 |
+
# Force the model to have the exact right x_start predictions
|
83 |
+
# for the part of the image which is known.
|
84 |
+
return (
|
85 |
+
x_start * (1 - model_kwargs['inpaint_mask'])
|
86 |
+
+ model_kwargs['inpaint_image'] * model_kwargs['inpaint_mask']
|
87 |
+
)
|
88 |
+
|
89 |
+
def show_images(batch: th.Tensor):
|
90 |
+
""" Display a batch of images inline. """
|
91 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
92 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
93 |
+
return Image.fromarray(reshaped.numpy())
|
94 |
+
|
95 |
+
def read_image(path: str, size: int = 256) -> Tuple[th.Tensor, th.Tensor]:
|
96 |
+
pil_img = Image.open(path).convert('RGB')
|
97 |
+
pil_img = pil_img.resize((size, size), resample=Image.BICUBIC)
|
98 |
+
img = np.array(pil_img)
|
99 |
+
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
|
100 |
+
|
101 |
+
def pil_to_numpy(pil_img: Image) -> Tuple[th.Tensor, th.Tensor]:
|
102 |
+
img = np.array(pil_img)
|
103 |
+
return th.from_numpy(img)[None].permute(0, 3, 1, 2).float() / 127.5 - 1
|
104 |
+
|
105 |
+
model_kwargs = dict()
|
106 |
+
def inpaint(input_img, input_img_with_mask, prompt):
|
107 |
+
|
108 |
+
print(prompt)
|
109 |
+
|
110 |
+
# Save as png for later mask detection :)
|
111 |
+
input_img_256 = input_img.convert('RGB').resize((256, 256), resample=Image.BICUBIC)
|
112 |
+
input_img_64 = input_img.convert('RGB').resize((64, 64), resample=Image.BICUBIC)
|
113 |
+
|
114 |
+
# Source image we are inpainting
|
115 |
+
source_image_256 = pil_to_numpy(input_img_256)
|
116 |
+
source_image_64 = pil_to_numpy(input_img_64)
|
117 |
+
|
118 |
+
# Since gradio doesn't supply which pixels were drawn, we need to find it ourselves!
|
119 |
+
# Assuming that all black pixels are meant for inpainting.
|
120 |
+
input_img_with_mask_64 = input_img_with_mask.convert('L').resize((64, 64), resample=Image.BICUBIC)
|
121 |
+
gray_scale_source_image = image_to_tensor(input_img_with_mask_64)
|
122 |
+
source_mask_64 = (gray_scale_source_image!=0).float()
|
123 |
+
source_mask_64_img = tensor_to_image(source_mask_64)
|
124 |
+
|
125 |
+
# The mask should always be a boolean 64x64 mask, and then we
|
126 |
+
# can upsample it for the second stage.
|
127 |
+
source_mask_64 = source_mask_64.unsqueeze(0)
|
128 |
+
source_mask_256 = F.interpolate(source_mask_64, (256, 256), mode='nearest')
|
129 |
+
|
130 |
+
|
131 |
+
##############################
|
132 |
+
# Sample from the base model #
|
133 |
+
##############################
|
134 |
+
|
135 |
+
# Create the text tokens to feed to the model.
|
136 |
+
tokens = model.tokenizer.encode(prompt)
|
137 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
138 |
+
tokens, options['text_ctx']
|
139 |
+
)
|
140 |
+
|
141 |
+
# Create the classifier-free guidance tokens (empty)
|
142 |
+
full_batch_size = batch_size * 2
|
143 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
144 |
+
[], options['text_ctx']
|
145 |
+
)
|
146 |
+
|
147 |
+
# Pack the tokens together into model kwargs.
|
148 |
+
global model_kwargs
|
149 |
+
model_kwargs = dict(
|
150 |
+
tokens=th.tensor(
|
151 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
152 |
+
),
|
153 |
+
mask=th.tensor(
|
154 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
155 |
+
dtype=th.bool,
|
156 |
+
device=device,
|
157 |
+
),
|
158 |
+
|
159 |
+
# Masked inpainting image
|
160 |
+
inpaint_image=(source_image_64 * source_mask_64).repeat(full_batch_size, 1, 1, 1).to(device),
|
161 |
+
inpaint_mask=source_mask_64.repeat(full_batch_size, 1, 1, 1).to(device),
|
162 |
+
)
|
163 |
+
|
164 |
+
# Sample from the base model.
|
165 |
+
model.del_cache()
|
166 |
+
samples = diffusion.p_sample_loop(
|
167 |
+
model_fn,
|
168 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
169 |
+
device=device,
|
170 |
+
clip_denoised=True,
|
171 |
+
progress=True,
|
172 |
+
model_kwargs=model_kwargs,
|
173 |
+
cond_fn=None,
|
174 |
+
denoised_fn=denoised_fn,
|
175 |
+
)[:batch_size]
|
176 |
+
model.del_cache()
|
177 |
+
|
178 |
+
##############################
|
179 |
+
# Upsample the 64x64 samples #
|
180 |
+
##############################
|
181 |
+
|
182 |
+
tokens = model_up.tokenizer.encode(prompt)
|
183 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
184 |
+
tokens, options_up['text_ctx']
|
185 |
+
)
|
186 |
+
|
187 |
+
# Create the model conditioning dict.
|
188 |
+
model_kwargs = dict(
|
189 |
+
# Low-res image to upsample.
|
190 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
191 |
+
|
192 |
+
# Text tokens
|
193 |
+
tokens=th.tensor(
|
194 |
+
[tokens] * batch_size, device=device
|
195 |
+
),
|
196 |
+
mask=th.tensor(
|
197 |
+
[mask] * batch_size,
|
198 |
+
dtype=th.bool,
|
199 |
+
device=device,
|
200 |
+
),
|
201 |
+
|
202 |
+
# Masked inpainting image.
|
203 |
+
inpaint_image=(source_image_256 * source_mask_256).repeat(batch_size, 1, 1, 1).to(device),
|
204 |
+
inpaint_mask=source_mask_256.repeat(batch_size, 1, 1, 1).to(device),
|
205 |
+
)
|
206 |
+
|
207 |
+
# Sample from the base model.
|
208 |
+
model_up.del_cache()
|
209 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
210 |
+
up_samples = diffusion_up.p_sample_loop(
|
211 |
+
model_up,
|
212 |
+
up_shape,
|
213 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
214 |
+
device=device,
|
215 |
+
clip_denoised=True,
|
216 |
+
progress=True,
|
217 |
+
model_kwargs=model_kwargs,
|
218 |
+
cond_fn=None,
|
219 |
+
denoised_fn=denoised_fn,
|
220 |
+
)[:batch_size]
|
221 |
+
model_up.del_cache()
|
222 |
+
|
223 |
+
return source_mask_64_img, show_images(up_samples)
|
224 |
+
|
225 |
+
gradio_inputs = [gr.inputs.Image(type='pil',
|
226 |
+
label="Input Image"),
|
227 |
+
gr.inputs.Image(type='pil',
|
228 |
+
label="Input Image With Mask"),
|
229 |
+
gr.inputs.Textbox(label='Conditional Text to Inpaint')]
|
230 |
+
|
231 |
+
# gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)')]
|
232 |
+
|
233 |
+
gradio_outputs = [gr.outputs.Image(label='Auto-Detected Mask (From drawn black pixels)'),
|
234 |
+
gr.outputs.Image(label='Inpainted Image')]
|
235 |
+
#examples = [['grass.png', 'grass_with_mask.png', 'a corgi in a field']]
|
236 |
+
|
237 |
+
title = "GLIDE Inpainting"
|
238 |
+
|
239 |
+
#description = "[WARNING: Queue times may take 4-6 minutes per person if there's no GPU! If there is a GPU, it'll take around 60 seconds] Using GLIDE to inpaint black regions of an input image! Instructions: 1) For the 'Input Image', upload an image. 2) For the 'Input Image with Mask', draw a black-colored mask (either manually with something like Paint, or by using gradio's built-in image editor & add a black-colored shape) IT MUST BE BLACK COLOR, but doesn't have to be rectangular! This is because it auto-detects the mask based on 0 (black) pixel values! 3) For the Conditional Text, type something you'd like to see the black region get filled in with :)"
|
240 |
+
|
241 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741' target='_blank'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im' target='_blank'>Github Repo</a> | <img src='https://visitor-badge.glitch.me/badge?page_id=epoching_glide_inpaint' alt='visitor badge'></p>"
|
242 |
+
|
243 |
+
iface = gr.Interface(fn=inpaint, inputs=gradio_inputs,
|
244 |
+
outputs=gradio_outputs,
|
245 |
+
examples=examples, title=title,
|
246 |
+
description=description, article=article,
|
247 |
+
enable_queue=True)
|
248 |
+
iface.launch()
|