Spaces:
Runtime error
Runtime error
File size: 1,247 Bytes
6bdf21e 2401777 6bdf21e 2401777 6bdf21e 2401777 6bdf21e 2401777 6bdf21e 2401777 ec61ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from transformers import Trainer, TrainingArguments, AutoModelForQuestionAnswering, AutoTokenizer
from datasets import load_dataset
# Load the model and tokenizer from the Hub
model = AutoModelForQuestionAnswering.from_pretrained("DeepSeek/DeepSeek-v3")
tokenizer = AutoTokenizer.from_pretrained("DeepSeek/DeepSeek-v3")
# Load your dataset
dataset = load_dataset("json", data_files={"train": "your_dataset_train.json", "test": "your_dataset_test.json"})
# Tokenize the dataset
def tokenize_function(examples):
return tokenizer(examples['question'], examples['document'], truncation=True, padding=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Set up the training arguments
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test']
)
# Start fine-tuning
trainer.train()
# Save the model after fine-tuning
model.save_pretrained('./fine_tuned_deepseek') |