lachie0232 commited on
Commit
2401777
·
verified ·
1 Parent(s): c0ec763

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Trainer, TrainingArguments, DeepSeekForQuestionAnswering, DeepSeekTokenizer
2
+ from datasets import load_dataset
3
+
4
+ # Load the DeepSeek model and tokenizer
5
+ model = DeepSeekForQuestionAnswering.from_pretrained("DeepSeek/DeepSeek-v3")
6
+ tokenizer = DeepSeekTokenizer.from_pretrained("DeepSeek/DeepSeek-v3")
7
+
8
+ # Load dataset
9
+ dataset = load_dataset("json", data_files={"train": "your_dataset_train.json", "test": "your_dataset_test.json"})
10
+
11
+ # Tokenize the dataset
12
+ def tokenize_function(examples):
13
+ return tokenizer(examples['question'], examples['document'], truncation=True, padding=True)
14
+
15
+ tokenized_datasets = dataset.map(tokenize_function, batched=True)
16
+
17
+ # Set up the training arguments
18
+ training_args = TrainingArguments(
19
+ output_dir='./results',
20
+ evaluation_strategy="epoch",
21
+ learning_rate=2e-5,
22
+ per_device_train_batch_size=16,
23
+ per_device_eval_batch_size=16,
24
+ num_train_epochs=3,
25
+ weight_decay=0.01
26
+ )
27
+
28
+ # Initialize Trainer
29
+ trainer = Trainer(
30
+ model=model,
31
+ args=training_args,
32
+ train_dataset=tokenized_datasets['train'],
33
+ eval_dataset=tokenized_datasets['test']
34
+ )
35
+
36
+ # Start the fine-tuning
37
+ trainer.train()
38
+
39
+ # Save the model after fine-tuning
40
+ model.save_pretrained('./fine_tuned_deepseek')