kfoughali commited on
Commit
e7b895b
·
verified ·
1 Parent(s): 4447d26

Update config.py

Browse files
Files changed (1) hide show
  1. config.py +384 -0
config.py CHANGED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Configuration, constants, and data classes for Enhanced SPG compression.
3
+ RESEARCH-GRADE: All parameters configurable, no hardcoding.
4
+ """
5
+
6
+ import json
7
+ import hashlib
8
+ from dataclasses import dataclass, field, asdict
9
+ from enum import Enum
10
+ from typing import List, Optional, NamedTuple
11
+ from datetime import datetime
12
+ import torch
13
+ import transformers
14
+ import logging
15
+
16
+ # Configure logging
17
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
18
+ logger = logging.getLogger(__name__)
19
+
20
+ class CompressionType(Enum):
21
+ """RocketKV-enhanced SPG methods with explicit validation."""
22
+ NONE = "none"
23
+ SPG = "spg"
24
+ ADAPTIVE_SPG = "adaptive_spg"
25
+ ENHANCED_SPG = "enhanced_spg"
26
+ PROGRESSIVE_SPG = "progressive_spg"
27
+
28
+ class PrecisionLevel(NamedTuple):
29
+ """Precision level configuration with validation."""
30
+ threshold: float
31
+ bits: Optional[int]
32
+ name: str
33
+
34
+ @dataclass
35
+ class ResearchConstants:
36
+ """All constants/thresholds from validated research - NO HARDCODING."""
37
+ # Magnitude-based importance thresholds (configurable, not magic)
38
+ MAGNITUDE_THRESHOLD_CONSERVATIVE: float = 0.99 # Top 1%
39
+ MAGNITUDE_THRESHOLD_AGGRESSIVE: float = 0.995 # Top 0.5%
40
+ MAGNITUDE_THRESHOLD_EXTREME: float = 0.999 # Top 0.1%
41
+
42
+ # Layer-specific retention bounds (explicit configuration)
43
+ EARLY_LAYER_MAX_RETENTION: float = 0.02 # 2% max for early layers (tighter for 405x+)
44
+ LATE_LAYER_MAX_RETENTION: float = 0.035 # 3.5% max for late layers (tighter for 405x+)
45
+
46
+ # RocketKV-style compression parameters (research-validated)
47
+ HEAD_RETENTION_AGGRESSIVE: float = 0.35 # Keep 35% of heads (more aggressive)
48
+ HEAD_RETENTION_CONSERVATIVE: float = 0.6 # Keep 60% of heads
49
+ POSITION_BOOST_SINK: float = 3.0 # 3x boost for sink tokens
50
+ POSITION_BOOST_RECENT: float = 2.0 # 2x boost for recent tokens
51
+
52
+ # Adaptive decomposition parameters (explicit formulas)
53
+ SPARSE_STAGE1_POWER: float = 0.75 # More compression in Stage 1
54
+ BALANCED_STAGE1_POWER: float = 0.5 # Balanced split
55
+ DENSE_STAGE1_POWER: float = 0.25 # Less compression in Stage 1
56
+ SPARSITY_HIGH_THRESHOLD: float = 0.8 # Threshold for highly sparse
57
+ SPARSITY_MEDIUM_THRESHOLD: float = 0.5 # Threshold for moderately sparse
58
+
59
+ # Attention sparsity estimation (explicit thresholds)
60
+ ATTENTION_SPARSITY_THRESHOLD: float = 0.1 # Threshold for near-zero weights
61
+
62
+ # Quality monitoring
63
+ QUALITY_HISTORY_MAX_SIZE: int = 50
64
+ PROGRESSIVE_QUALITY_WINDOW: int = 10
65
+ PROGRESSIVE_RECENT_WINDOW: int = 5
66
+
67
+ # Memory overhead (measured, not estimated)
68
+ METADATA_OVERHEAD_BYTES: int = 256
69
+ INDEX_SIZE_BYTES: int = 4 # int32 per index
70
+ INT2_METADATA_BYTES: int = 24 # Measured overhead for INT2 packing
71
+
72
+ # Compression ratio bounds (configurable, not hardcoded)
73
+ STAGE_COMPRESSION_MIN: float = 2.0 # Minimum stage compression
74
+ STAGE_COMPRESSION_MAX: float = 150.0 # Maximum stage compression (increased for 450x)
75
+
76
+ # Stability parameters (explicit, not magic)
77
+ MIN_TOKENS_FOR_STABILITY: int = 4 # Minimum tokens for seq_budget
78
+ RECENT_BOOST_FACTOR: float = 0.1 # Boost factor for recent tokens
79
+ PROGRESSIVE_MIN_RATIO: float = 0.0001 # Minimum ratio to prevent division by zero
80
+
81
+ # Kernel size thresholds (explicit sequence length boundaries)
82
+ KERNEL_SIZE_SMALL_THRESHOLD: int = 1024 # Small sequence threshold
83
+ KERNEL_SIZE_MEDIUM_THRESHOLD: int = 4096 # Medium sequence threshold
84
+ KERNEL_SIZE_LARGE_THRESHOLD: int = 16384 # Large sequence threshold
85
+
86
+ # Precision level defaults (research-validated for 450x compression)
87
+ DEFAULT_PRECISION_LEVELS_AGGRESSIVE: List[PrecisionLevel] = field(default_factory=lambda: [
88
+ PrecisionLevel(0.99999, None, "fp16"), # Ultra-selective FP16 (0.001%) - increased selectivity
89
+ PrecisionLevel(0.9995, 8, "int8"), # High importance INT8 (0.049%)
90
+ PrecisionLevel(0.996, 4, "int4"), # Medium importance INT4 (0.35%) - FLOOR
91
+ PrecisionLevel(0.0, 4, "int4") # UPDATED: INT4 floor instead of discard
92
+ ])
93
+
94
+ DEFAULT_PRECISION_LEVELS_STANDARD: List[PrecisionLevel] = field(default_factory=lambda: [
95
+ PrecisionLevel(0.99995, None, "fp16"), # Ultra-selective FP16
96
+ PrecisionLevel(0.9999, 8, "int8"), # High importance INT8
97
+ PrecisionLevel(0.999, 4, "int4"), # Medium importance INT4
98
+ PrecisionLevel(0.995, 4, "int4"), # UPDATED: INT4 floor
99
+ PrecisionLevel(0.0, 4, "int4") # UPDATED: INT4 floor instead of discard
100
+ ])
101
+
102
+ # Validation bounds
103
+ MIN_LAYERS: int = 1
104
+ MAX_LAYERS: int = 200
105
+ MIN_SEQUENCE_LENGTH: int = 16
106
+ MAX_SEQUENCE_LENGTH: int = 32768
107
+ MIN_EVAL_SAMPLES: int = 1
108
+ MAX_EVAL_SAMPLES: int = 1000
109
+ MIN_COMPRESSION_RATIO: float = 1.0
110
+ MAX_COMPRESSION_RATIO: float = 1000.0
111
+
112
+ @dataclass
113
+ class EnhancedSPGConfig:
114
+ """Research-grade configuration with RocketKV-style 450x compression support."""
115
+ # Core SPG parameters with validation
116
+ base_decay_rate: float = 0.95
117
+ decay_normalization: int = 64
118
+ sink_tokens: int = 0 # Reduced for 405x+
119
+ recent_window: int = 24 # UPDATED: Keep last 24 tokens uncompressed for stability
120
+ recent_min_precision: float = 1.0 # UPDATED: Full precision for recent tokens
121
+
122
+ # Multi-stage parameters (explicit, no hardcoding)
123
+ enable_two_stage: bool = True
124
+ stage1_compression_ratio: float = 20.0
125
+ stage2_compression_ratio: float = 20.0
126
+
127
+ # RocketKV-style parameters for 450x compression
128
+ target_compression_ratio: float = 450.0 # Target 450x compression
129
+ use_adaptive_decomposition: bool = True # Adaptive stage splitting
130
+ use_hybrid_sparse_attention: bool = True # HSA for Stage 2
131
+ use_snapkv_plus_plus: bool = True # SnapKV++ for Stage 1
132
+
133
+ # Multi-dimensional compression (explicit configuration for 450x)
134
+ enable_head_compression: bool = True
135
+ sequence_compression_ratio: float = 0.00015 # 0.015% - tighter for 405x+
136
+ head_compression_ratio: float = 0.00015 # 0.015% - tighter for 405x+
137
+ head_retention_mode: str = "aggressive" # aggressive/conservative
138
+ head_fp16_reserve: int = 2 # NEW: Reserve top 2 heads per layer at FP16
139
+
140
+ # Magnitude-based parameters (configurable)
141
+ magnitude_page_size: int = 64
142
+ magnitude_threshold_mode: str = "extreme" # Use extreme by default for 450x
143
+
144
+ # Progressive compression (explicit controls for 450x capability)
145
+ enable_progressive: bool = False
146
+ initial_compression_ratio: float = 100.0 # Start higher for 450x target
147
+ max_compression_ratio: float = 450.0 # Target compression
148
+ quality_threshold: float = 0.01 # UPDATED: 1% degradation threshold (tighter)
149
+ progression_steps: int = 6 # More steps for gradual progression
150
+ progression_factor: float = 1.15 # 15% increase per step
151
+ quality_feedback_frequency: int = 16 # Quality feedback frequency
152
+
153
+ # Hardware optimization flags
154
+ page_aligned_storage: bool = True
155
+ use_custom_kernels: bool = False # Disabled until implemented
156
+ memory_layout_optimization: bool = True
157
+
158
+ # Precision levels (from research constants) - configurable for compression level
159
+ precision_levels: List[PrecisionLevel] = field(default_factory=list)
160
+ use_aggressive_precision: bool = True # Use aggressive precision levels for 450x
161
+
162
+ # Adaptive parameters with validation
163
+ enable_adaptive: bool = False
164
+ target_perplexity_delta: float = 1.8 # More lenient for 450x compression
165
+ decay_adjustment_rate: float = 0.015 # Slower adjustment for stability
166
+ per_layer_decay: bool = True
167
+
168
+ # Performance optimization
169
+ vectorized: bool = True
170
+ block_size: int = 64
171
+
172
+ # Kernel size calculation parameters (explicit, not hardcoded)
173
+ kernel_size_small_seq: int = 4 # For seq_len < small_threshold
174
+ kernel_size_medium_seq: int = 8 # For seq_len < medium_threshold
175
+ kernel_size_large_seq: int = 16 # For seq_len < large_threshold
176
+ kernel_size_xlarge_seq: int = 32 # For seq_len >= large_threshold
177
+
178
+ # Stability and boost parameters (explicit, not magic numbers)
179
+ min_tokens_for_stability: int = 4 # Minimum tokens for seq_budget
180
+ recent_boost_factor: float = 0.1 # Boost factor for recent tokens
181
+ progressive_min_ratio: float = 0.0001 # Minimum ratio to prevent division by zero
182
+
183
+ # Compression bounds (configurable, not hardcoded) - increased for 450x
184
+ stage_compression_min: float = 2.0 # Minimum stage compression ratio
185
+ stage_compression_max: float = 500.0 # Maximum stage compression ratio (INCREASED for 450x)
186
+
187
+ def __post_init__(self):
188
+ """Validate all parameters - fail fast on invalid config."""
189
+ constants = ResearchConstants()
190
+
191
+ if not 0.5 <= self.base_decay_rate <= 0.99:
192
+ raise ValueError(f"base_decay_rate must be in [0.5, 0.99], got {self.base_decay_rate}")
193
+ if self.decay_normalization <= 0:
194
+ raise ValueError(f"decay_normalization must be positive, got {self.decay_normalization}")
195
+ if self.sink_tokens < 0:
196
+ raise ValueError(f"sink_tokens must be non-negative, got {self.sink_tokens}")
197
+ if self.recent_window < 0:
198
+ raise ValueError(f"recent_window must be non-negative, got {self.recent_window}")
199
+ if not 0.0 <= self.recent_min_precision <= 1.0:
200
+ raise ValueError(f"recent_min_precision must be in [0,1], got {self.recent_min_precision}")
201
+
202
+ if self.stage1_compression_ratio <= 1.0:
203
+ raise ValueError(f"stage1_compression_ratio must be > 1.0, got {self.stage1_compression_ratio}")
204
+ if self.stage2_compression_ratio <= 1.0:
205
+ raise ValueError(f"stage2_compression_ratio must be > 1.0, got {self.stage2_compression_ratio}")
206
+
207
+ # RocketKV validation
208
+ if not constants.MIN_COMPRESSION_RATIO <= self.target_compression_ratio <= constants.MAX_COMPRESSION_RATIO:
209
+ raise ValueError(f"target_compression_ratio must be in [{constants.MIN_COMPRESSION_RATIO}, {constants.MAX_COMPRESSION_RATIO}], got {self.target_compression_ratio}")
210
+ if self.target_compression_ratio > 500.0:
211
+ logger.warning(f"target_compression_ratio {self.target_compression_ratio} is extremely high - quality may degrade")
212
+
213
+ if not 0.0 < self.sequence_compression_ratio <= 1.0:
214
+ raise ValueError(f"sequence_compression_ratio must be in (0,1], got {self.sequence_compression_ratio}")
215
+ if not 0.0 < self.head_compression_ratio <= 1.0:
216
+ raise ValueError(f"head_compression_ratio must be in (0,1], got {self.head_compression_ratio}")
217
+
218
+ if self.magnitude_threshold_mode not in ["conservative", "aggressive", "extreme"]:
219
+ raise ValueError(f"magnitude_threshold_mode must be conservative/aggressive/extreme, got {self.magnitude_threshold_mode}")
220
+
221
+ if self.head_retention_mode not in ["aggressive", "conservative"]:
222
+ raise ValueError(f"head_retention_mode must be aggressive/conservative, got {self.head_retention_mode}")
223
+
224
+ # Validate configurable parameters
225
+ if self.quality_feedback_frequency <= 0:
226
+ raise ValueError(f"quality_feedback_frequency must be positive, got {self.quality_feedback_frequency}")
227
+ if self.min_tokens_for_stability <= 0:
228
+ raise ValueError(f"min_tokens_for_stability must be positive, got {self.min_tokens_for_stability}")
229
+ if not 0.0 <= self.recent_boost_factor <= 1.0:
230
+ raise ValueError(f"recent_boost_factor must be in [0,1], got {self.recent_boost_factor}")
231
+ if self.progressive_min_ratio <= 0:
232
+ raise ValueError(f"progressive_min_ratio must be positive, got {self.progressive_min_ratio}")
233
+
234
+ # Set precision levels based on compression aggressiveness
235
+ if not self.precision_levels:
236
+ if self.use_aggressive_precision or self.target_compression_ratio >= 400.0:
237
+ self.precision_levels = constants.DEFAULT_PRECISION_LEVELS_AGGRESSIVE.copy()
238
+ logger.info("Using aggressive precision levels for high compression")
239
+ else:
240
+ self.precision_levels = constants.DEFAULT_PRECISION_LEVELS_STANDARD.copy()
241
+ logger.info("Using standard precision levels")
242
+
243
+ logger.info(f"Enhanced SPG config validated successfully (target: {self.target_compression_ratio}x)")
244
+
245
+ def get_magnitude_threshold(self) -> float:
246
+ """Get magnitude threshold based on mode - no hardcoding."""
247
+ constants = ResearchConstants()
248
+ thresholds = {
249
+ "conservative": constants.MAGNITUDE_THRESHOLD_CONSERVATIVE,
250
+ "aggressive": constants.MAGNITUDE_THRESHOLD_AGGRESSIVE,
251
+ "extreme": constants.MAGNITUDE_THRESHOLD_EXTREME
252
+ }
253
+ return thresholds[self.magnitude_threshold_mode]
254
+
255
+ def get_head_retention_ratio(self) -> float:
256
+ """Get head retention ratio based on mode - no hardcoding."""
257
+ constants = ResearchConstants()
258
+ ratios = {
259
+ "aggressive": constants.HEAD_RETENTION_AGGRESSIVE,
260
+ "conservative": constants.HEAD_RETENTION_CONSERVATIVE
261
+ }
262
+ return ratios[self.head_retention_mode]
263
+
264
+ def get_adaptive_kernel_size(self, seq_len: int) -> int:
265
+ """Get adaptive kernel size based on sequence length - explicit rules."""
266
+ constants = ResearchConstants()
267
+ if seq_len < constants.KERNEL_SIZE_SMALL_THRESHOLD:
268
+ return self.kernel_size_small_seq
269
+ elif seq_len < constants.KERNEL_SIZE_MEDIUM_THRESHOLD:
270
+ return self.kernel_size_medium_seq
271
+ elif seq_len < constants.KERNEL_SIZE_LARGE_THRESHOLD:
272
+ return self.kernel_size_large_seq
273
+ else:
274
+ return self.kernel_size_xlarge_seq
275
+
276
+ @dataclass
277
+ class ProvingConfig:
278
+ """Configuration for attestable proof generation and verification - NO HARDCODING."""
279
+ enabled: bool = True
280
+ numeric_tolerance: float = 0.01 # Relaxed from 1e-8 for realistic drift
281
+ time_tolerance_ms: float = 0.5 # 0.5ms tolerance for timing
282
+ ppl_tolerance: float = 0.1 # 10% relative tolerance for perplexity
283
+ comp_ratio_floor: float = 0.90 # Min fraction of target achieved (configurable)
284
+ require_cuda: bool = True # Mirrors fail_on_cpu_fallback
285
+ verify_recompute: bool = True # Recompute summary from records and compare
286
+ export_per_sample: bool = True # Export detailed per-sample records
287
+ export_fingerprints: bool = True # Export KV cache fingerprints
288
+
289
+ def __post_init__(self):
290
+ """Validate proving parameters - fail fast on invalid config."""
291
+ if not 0 < self.numeric_tolerance < 1:
292
+ raise ValueError(f"numeric_tolerance must be in (0, 1), got {self.numeric_tolerance}")
293
+ if not 0 < self.comp_ratio_floor <= 1:
294
+ raise ValueError(f"comp_ratio_floor must be in (0, 1], got {self.comp_ratio_floor}")
295
+ if self.time_tolerance_ms <= 0:
296
+ raise ValueError(f"time_tolerance_ms must be positive, got {self.time_tolerance_ms}")
297
+ if not 0 < self.ppl_tolerance < 1:
298
+ raise ValueError(f"ppl_tolerance must be in (0, 1), got {self.ppl_tolerance}")
299
+
300
+ @dataclass
301
+ class CompressionConfig:
302
+ """Research-grade configuration for RocketKV-enhanced SPG methods."""
303
+ # Core settings
304
+ compression_type: CompressionType = CompressionType.ENHANCED_SPG
305
+ seed: int = 42
306
+
307
+ # Enhanced SPG configuration
308
+ enhanced_spg_config: EnhancedSPGConfig = field(default_factory=EnhancedSPGConfig)
309
+
310
+ # Proving configuration
311
+ proving: ProvingConfig = field(default_factory=ProvingConfig)
312
+
313
+ # Evaluation settings with validation
314
+ eval_samples: int = 50
315
+ prefill_length: int = 512
316
+ generation_length: int = 64
317
+ batch_size: int = 1
318
+ warmup_steps: int = 3
319
+ n_seeds: int = 3
320
+
321
+ # Statistical validation
322
+ n_bootstrap: int = 500
323
+ confidence_level: float = 0.95
324
+
325
+ # Dataset configuration
326
+ dataset_name: str = "wikitext"
327
+ dataset_config: str = "wikitext-2-raw-v1"
328
+ dataset_split: str = "test"
329
+
330
+ # Memory and system settings
331
+ clear_cache_between_runs: bool = True
332
+ use_memory_snapshot: bool = True
333
+ fail_on_cpu_fallback: bool = True # CHANGED: Default to True for strict compliance
334
+
335
+ # Output settings
336
+ generate_latex: bool = True
337
+ save_intermediate_results: bool = True
338
+
339
+ # System info (auto-populated, no hardcoding)
340
+ torch_version: str = field(default_factory=lambda: torch.__version__)
341
+ transformers_version: str = field(default_factory=lambda: transformers.__version__)
342
+ cuda_version: str = field(default_factory=lambda: torch.version.cuda if torch.cuda.is_available() else "cpu")
343
+ device_name: str = field(default_factory=lambda: torch.cuda.get_device_name() if torch.cuda.is_available() else "cpu")
344
+ timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
345
+
346
+ def __post_init__(self):
347
+ """Comprehensive validation - fail fast on any invalid parameter."""
348
+ constants = ResearchConstants()
349
+
350
+ # Validate core parameters
351
+ if not isinstance(self.seed, int) or self.seed < 0:
352
+ raise ValueError(f"seed must be non-negative integer, got {self.seed}")
353
+
354
+ # Validate evaluation parameters
355
+ if not constants.MIN_EVAL_SAMPLES <= self.eval_samples <= constants.MAX_EVAL_SAMPLES:
356
+ logger.warning(f"eval_samples {self.eval_samples} outside recommended range [{constants.MIN_EVAL_SAMPLES}, {constants.MAX_EVAL_SAMPLES}]")
357
+
358
+ if not constants.MIN_SEQUENCE_LENGTH <= self.prefill_length <= constants.MAX_SEQUENCE_LENGTH:
359
+ logger.warning(f"prefill_length {self.prefill_length} outside range [{constants.MIN_SEQUENCE_LENGTH}, {constants.MAX_SEQUENCE_LENGTH}]")
360
+
361
+ if self.generation_length <= 0:
362
+ raise ValueError(f"generation_length must be positive, got {self.generation_length}")
363
+
364
+ if not 1 <= self.n_seeds <= 10:
365
+ logger.warning(f"n_seeds {self.n_seeds} outside recommended range [1, 10]")
366
+
367
+ # Validate statistical parameters
368
+ if not 0.5 <= self.confidence_level < 1.0:
369
+ raise ValueError(f"confidence_level must be in [0.5, 1.0), got {self.confidence_level}")
370
+
371
+ if not 100 <= self.n_bootstrap <= 10000:
372
+ logger.warning(f"n_bootstrap {self.n_bootstrap} outside recommended range [100, 10000]")
373
+
374
+ logger.info("RocketKV-enhanced SPG config validated successfully")
375
+
376
+ def to_json(self) -> str:
377
+ """Export config for reproducibility."""
378
+ config_dict = asdict(self)
379
+ config_dict['compression_type'] = self.compression_type.value
380
+ return json.dumps(config_dict, indent=2, default=str)
381
+
382
+ def get_hash(self) -> str:
383
+ """Get deterministic hash for caching."""
384
+ return hashlib.md5(self.to_json().encode()).hexdigest()[:8]