kfoughali commited on
Commit
4447d26
·
verified ·
1 Parent(s): 5919372

Update config.py

Browse files
Files changed (1) hide show
  1. config.py +0 -384
config.py CHANGED
@@ -1,384 +0,0 @@
1
- """
2
- Configuration, constants, and data classes for Enhanced SPG compression.
3
- RESEARCH-GRADE: All parameters configurable, no hardcoding.
4
- """
5
-
6
- import json
7
- import hashlib
8
- from dataclasses import dataclass, field, asdict
9
- from enum import Enum
10
- from typing import List, Optional, NamedTuple
11
- from datetime import datetime
12
- import torch
13
- import transformers
14
- import logging
15
-
16
- # Configure logging
17
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
18
- logger = logging.getLogger(__name__)
19
-
20
- class CompressionType(Enum):
21
- """RocketKV-enhanced SPG methods with explicit validation."""
22
- NONE = "none"
23
- SPG = "spg"
24
- ADAPTIVE_SPG = "adaptive_spg"
25
- ENHANCED_SPG = "enhanced_spg"
26
- PROGRESSIVE_SPG = "progressive_spg"
27
-
28
- class PrecisionLevel(NamedTuple):
29
- """Precision level configuration with validation."""
30
- threshold: float
31
- bits: Optional[int]
32
- name: str
33
-
34
- @dataclass
35
- class ResearchConstants:
36
- """All constants/thresholds from validated research - NO HARDCODING."""
37
- # Magnitude-based importance thresholds (configurable, not magic)
38
- MAGNITUDE_THRESHOLD_CONSERVATIVE: float = 0.99 # Top 1%
39
- MAGNITUDE_THRESHOLD_AGGRESSIVE: float = 0.995 # Top 0.5%
40
- MAGNITUDE_THRESHOLD_EXTREME: float = 0.999 # Top 0.1%
41
-
42
- # Layer-specific retention bounds (explicit configuration)
43
- EARLY_LAYER_MAX_RETENTION: float = 0.02 # 2% max for early layers (tighter for 405x+)
44
- LATE_LAYER_MAX_RETENTION: float = 0.035 # 3.5% max for late layers (tighter for 405x+)
45
-
46
- # RocketKV-style compression parameters (research-validated)
47
- HEAD_RETENTION_AGGRESSIVE: float = 0.35 # Keep 35% of heads (more aggressive)
48
- HEAD_RETENTION_CONSERVATIVE: float = 0.6 # Keep 60% of heads
49
- POSITION_BOOST_SINK: float = 3.0 # 3x boost for sink tokens
50
- POSITION_BOOST_RECENT: float = 2.0 # 2x boost for recent tokens
51
-
52
- # Adaptive decomposition parameters (explicit formulas)
53
- SPARSE_STAGE1_POWER: float = 0.75 # More compression in Stage 1
54
- BALANCED_STAGE1_POWER: float = 0.5 # Balanced split
55
- DENSE_STAGE1_POWER: float = 0.25 # Less compression in Stage 1
56
- SPARSITY_HIGH_THRESHOLD: float = 0.8 # Threshold for highly sparse
57
- SPARSITY_MEDIUM_THRESHOLD: float = 0.5 # Threshold for moderately sparse
58
-
59
- # Attention sparsity estimation (explicit thresholds)
60
- ATTENTION_SPARSITY_THRESHOLD: float = 0.1 # Threshold for near-zero weights
61
-
62
- # Quality monitoring
63
- QUALITY_HISTORY_MAX_SIZE: int = 50
64
- PROGRESSIVE_QUALITY_WINDOW: int = 10
65
- PROGRESSIVE_RECENT_WINDOW: int = 5
66
-
67
- # Memory overhead (measured, not estimated)
68
- METADATA_OVERHEAD_BYTES: int = 256
69
- INDEX_SIZE_BYTES: int = 4 # int32 per index
70
- INT2_METADATA_BYTES: int = 24 # Measured overhead for INT2 packing
71
-
72
- # Compression ratio bounds (configurable, not hardcoded)
73
- STAGE_COMPRESSION_MIN: float = 2.0 # Minimum stage compression
74
- STAGE_COMPRESSION_MAX: float = 150.0 # Maximum stage compression (increased for 450x)
75
-
76
- # Stability parameters (explicit, not magic)
77
- MIN_TOKENS_FOR_STABILITY: int = 4 # Minimum tokens for seq_budget
78
- RECENT_BOOST_FACTOR: float = 0.1 # Boost factor for recent tokens
79
- PROGRESSIVE_MIN_RATIO: float = 0.0001 # Minimum ratio to prevent division by zero
80
-
81
- # Kernel size thresholds (explicit sequence length boundaries)
82
- KERNEL_SIZE_SMALL_THRESHOLD: int = 1024 # Small sequence threshold
83
- KERNEL_SIZE_MEDIUM_THRESHOLD: int = 4096 # Medium sequence threshold
84
- KERNEL_SIZE_LARGE_THRESHOLD: int = 16384 # Large sequence threshold
85
-
86
- # Precision level defaults (research-validated for 450x compression)
87
- DEFAULT_PRECISION_LEVELS_AGGRESSIVE: List[PrecisionLevel] = field(default_factory=lambda: [
88
- PrecisionLevel(0.99999, None, "fp16"), # Ultra-selective FP16 (0.001%) - increased selectivity
89
- PrecisionLevel(0.9995, 8, "int8"), # High importance INT8 (0.049%)
90
- PrecisionLevel(0.996, 4, "int4"), # Medium importance INT4 (0.35%) - FLOOR
91
- PrecisionLevel(0.0, 4, "int4") # UPDATED: INT4 floor instead of discard
92
- ])
93
-
94
- DEFAULT_PRECISION_LEVELS_STANDARD: List[PrecisionLevel] = field(default_factory=lambda: [
95
- PrecisionLevel(0.99995, None, "fp16"), # Ultra-selective FP16
96
- PrecisionLevel(0.9999, 8, "int8"), # High importance INT8
97
- PrecisionLevel(0.999, 4, "int4"), # Medium importance INT4
98
- PrecisionLevel(0.995, 4, "int4"), # UPDATED: INT4 floor
99
- PrecisionLevel(0.0, 4, "int4") # UPDATED: INT4 floor instead of discard
100
- ])
101
-
102
- # Validation bounds
103
- MIN_LAYERS: int = 1
104
- MAX_LAYERS: int = 200
105
- MIN_SEQUENCE_LENGTH: int = 16
106
- MAX_SEQUENCE_LENGTH: int = 32768
107
- MIN_EVAL_SAMPLES: int = 1
108
- MAX_EVAL_SAMPLES: int = 1000
109
- MIN_COMPRESSION_RATIO: float = 1.0
110
- MAX_COMPRESSION_RATIO: float = 1000.0
111
-
112
- @dataclass
113
- class EnhancedSPGConfig:
114
- """Research-grade configuration with RocketKV-style 450x compression support."""
115
- # Core SPG parameters with validation
116
- base_decay_rate: float = 0.95
117
- decay_normalization: int = 64
118
- sink_tokens: int = 0 # Reduced for 405x+
119
- recent_window: int = 24 # UPDATED: Keep last 24 tokens uncompressed for stability
120
- recent_min_precision: float = 1.0 # UPDATED: Full precision for recent tokens
121
-
122
- # Multi-stage parameters (explicit, no hardcoding)
123
- enable_two_stage: bool = True
124
- stage1_compression_ratio: float = 20.0
125
- stage2_compression_ratio: float = 20.0
126
-
127
- # RocketKV-style parameters for 450x compression
128
- target_compression_ratio: float = 450.0 # Target 450x compression
129
- use_adaptive_decomposition: bool = True # Adaptive stage splitting
130
- use_hybrid_sparse_attention: bool = True # HSA for Stage 2
131
- use_snapkv_plus_plus: bool = True # SnapKV++ for Stage 1
132
-
133
- # Multi-dimensional compression (explicit configuration for 450x)
134
- enable_head_compression: bool = True
135
- sequence_compression_ratio: float = 0.00015 # 0.015% - tighter for 405x+
136
- head_compression_ratio: float = 0.00015 # 0.015% - tighter for 405x+
137
- head_retention_mode: str = "aggressive" # aggressive/conservative
138
- head_fp16_reserve: int = 2 # NEW: Reserve top 2 heads per layer at FP16
139
-
140
- # Magnitude-based parameters (configurable)
141
- magnitude_page_size: int = 64
142
- magnitude_threshold_mode: str = "extreme" # Use extreme by default for 450x
143
-
144
- # Progressive compression (explicit controls for 450x capability)
145
- enable_progressive: bool = False
146
- initial_compression_ratio: float = 100.0 # Start higher for 450x target
147
- max_compression_ratio: float = 450.0 # Target compression
148
- quality_threshold: float = 0.01 # UPDATED: 1% degradation threshold (tighter)
149
- progression_steps: int = 6 # More steps for gradual progression
150
- progression_factor: float = 1.15 # 15% increase per step
151
- quality_feedback_frequency: int = 16 # Quality feedback frequency
152
-
153
- # Hardware optimization flags
154
- page_aligned_storage: bool = True
155
- use_custom_kernels: bool = False # Disabled until implemented
156
- memory_layout_optimization: bool = True
157
-
158
- # Precision levels (from research constants) - configurable for compression level
159
- precision_levels: List[PrecisionLevel] = field(default_factory=list)
160
- use_aggressive_precision: bool = True # Use aggressive precision levels for 450x
161
-
162
- # Adaptive parameters with validation
163
- enable_adaptive: bool = False
164
- target_perplexity_delta: float = 1.8 # More lenient for 450x compression
165
- decay_adjustment_rate: float = 0.015 # Slower adjustment for stability
166
- per_layer_decay: bool = True
167
-
168
- # Performance optimization
169
- vectorized: bool = True
170
- block_size: int = 64
171
-
172
- # Kernel size calculation parameters (explicit, not hardcoded)
173
- kernel_size_small_seq: int = 4 # For seq_len < small_threshold
174
- kernel_size_medium_seq: int = 8 # For seq_len < medium_threshold
175
- kernel_size_large_seq: int = 16 # For seq_len < large_threshold
176
- kernel_size_xlarge_seq: int = 32 # For seq_len >= large_threshold
177
-
178
- # Stability and boost parameters (explicit, not magic numbers)
179
- min_tokens_for_stability: int = 4 # Minimum tokens for seq_budget
180
- recent_boost_factor: float = 0.1 # Boost factor for recent tokens
181
- progressive_min_ratio: float = 0.0001 # Minimum ratio to prevent division by zero
182
-
183
- # Compression bounds (configurable, not hardcoded) - increased for 450x
184
- stage_compression_min: float = 2.0 # Minimum stage compression ratio
185
- stage_compression_max: float = 500.0 # Maximum stage compression ratio (INCREASED for 450x)
186
-
187
- def __post_init__(self):
188
- """Validate all parameters - fail fast on invalid config."""
189
- constants = ResearchConstants()
190
-
191
- if not 0.5 <= self.base_decay_rate <= 0.99:
192
- raise ValueError(f"base_decay_rate must be in [0.5, 0.99], got {self.base_decay_rate}")
193
- if self.decay_normalization <= 0:
194
- raise ValueError(f"decay_normalization must be positive, got {self.decay_normalization}")
195
- if self.sink_tokens < 0:
196
- raise ValueError(f"sink_tokens must be non-negative, got {self.sink_tokens}")
197
- if self.recent_window < 0:
198
- raise ValueError(f"recent_window must be non-negative, got {self.recent_window}")
199
- if not 0.0 <= self.recent_min_precision <= 1.0:
200
- raise ValueError(f"recent_min_precision must be in [0,1], got {self.recent_min_precision}")
201
-
202
- if self.stage1_compression_ratio <= 1.0:
203
- raise ValueError(f"stage1_compression_ratio must be > 1.0, got {self.stage1_compression_ratio}")
204
- if self.stage2_compression_ratio <= 1.0:
205
- raise ValueError(f"stage2_compression_ratio must be > 1.0, got {self.stage2_compression_ratio}")
206
-
207
- # RocketKV validation
208
- if not constants.MIN_COMPRESSION_RATIO <= self.target_compression_ratio <= constants.MAX_COMPRESSION_RATIO:
209
- raise ValueError(f"target_compression_ratio must be in [{constants.MIN_COMPRESSION_RATIO}, {constants.MAX_COMPRESSION_RATIO}], got {self.target_compression_ratio}")
210
- if self.target_compression_ratio > 500.0:
211
- logger.warning(f"target_compression_ratio {self.target_compression_ratio} is extremely high - quality may degrade")
212
-
213
- if not 0.0 < self.sequence_compression_ratio <= 1.0:
214
- raise ValueError(f"sequence_compression_ratio must be in (0,1], got {self.sequence_compression_ratio}")
215
- if not 0.0 < self.head_compression_ratio <= 1.0:
216
- raise ValueError(f"head_compression_ratio must be in (0,1], got {self.head_compression_ratio}")
217
-
218
- if self.magnitude_threshold_mode not in ["conservative", "aggressive", "extreme"]:
219
- raise ValueError(f"magnitude_threshold_mode must be conservative/aggressive/extreme, got {self.magnitude_threshold_mode}")
220
-
221
- if self.head_retention_mode not in ["aggressive", "conservative"]:
222
- raise ValueError(f"head_retention_mode must be aggressive/conservative, got {self.head_retention_mode}")
223
-
224
- # Validate configurable parameters
225
- if self.quality_feedback_frequency <= 0:
226
- raise ValueError(f"quality_feedback_frequency must be positive, got {self.quality_feedback_frequency}")
227
- if self.min_tokens_for_stability <= 0:
228
- raise ValueError(f"min_tokens_for_stability must be positive, got {self.min_tokens_for_stability}")
229
- if not 0.0 <= self.recent_boost_factor <= 1.0:
230
- raise ValueError(f"recent_boost_factor must be in [0,1], got {self.recent_boost_factor}")
231
- if self.progressive_min_ratio <= 0:
232
- raise ValueError(f"progressive_min_ratio must be positive, got {self.progressive_min_ratio}")
233
-
234
- # Set precision levels based on compression aggressiveness
235
- if not self.precision_levels:
236
- if self.use_aggressive_precision or self.target_compression_ratio >= 400.0:
237
- self.precision_levels = constants.DEFAULT_PRECISION_LEVELS_AGGRESSIVE.copy()
238
- logger.info("Using aggressive precision levels for high compression")
239
- else:
240
- self.precision_levels = constants.DEFAULT_PRECISION_LEVELS_STANDARD.copy()
241
- logger.info("Using standard precision levels")
242
-
243
- logger.info(f"Enhanced SPG config validated successfully (target: {self.target_compression_ratio}x)")
244
-
245
- def get_magnitude_threshold(self) -> float:
246
- """Get magnitude threshold based on mode - no hardcoding."""
247
- constants = ResearchConstants()
248
- thresholds = {
249
- "conservative": constants.MAGNITUDE_THRESHOLD_CONSERVATIVE,
250
- "aggressive": constants.MAGNITUDE_THRESHOLD_AGGRESSIVE,
251
- "extreme": constants.MAGNITUDE_THRESHOLD_EXTREME
252
- }
253
- return thresholds[self.magnitude_threshold_mode]
254
-
255
- def get_head_retention_ratio(self) -> float:
256
- """Get head retention ratio based on mode - no hardcoding."""
257
- constants = ResearchConstants()
258
- ratios = {
259
- "aggressive": constants.HEAD_RETENTION_AGGRESSIVE,
260
- "conservative": constants.HEAD_RETENTION_CONSERVATIVE
261
- }
262
- return ratios[self.head_retention_mode]
263
-
264
- def get_adaptive_kernel_size(self, seq_len: int) -> int:
265
- """Get adaptive kernel size based on sequence length - explicit rules."""
266
- constants = ResearchConstants()
267
- if seq_len < constants.KERNEL_SIZE_SMALL_THRESHOLD:
268
- return self.kernel_size_small_seq
269
- elif seq_len < constants.KERNEL_SIZE_MEDIUM_THRESHOLD:
270
- return self.kernel_size_medium_seq
271
- elif seq_len < constants.KERNEL_SIZE_LARGE_THRESHOLD:
272
- return self.kernel_size_large_seq
273
- else:
274
- return self.kernel_size_xlarge_seq
275
-
276
- @dataclass
277
- class ProvingConfig:
278
- """Configuration for attestable proof generation and verification - NO HARDCODING."""
279
- enabled: bool = True
280
- numeric_tolerance: float = 0.01 # Relaxed from 1e-8 for realistic drift
281
- time_tolerance_ms: float = 0.5 # 0.5ms tolerance for timing
282
- ppl_tolerance: float = 0.1 # 10% relative tolerance for perplexity
283
- comp_ratio_floor: float = 0.90 # Min fraction of target achieved (configurable)
284
- require_cuda: bool = True # Mirrors fail_on_cpu_fallback
285
- verify_recompute: bool = True # Recompute summary from records and compare
286
- export_per_sample: bool = True # Export detailed per-sample records
287
- export_fingerprints: bool = True # Export KV cache fingerprints
288
-
289
- def __post_init__(self):
290
- """Validate proving parameters - fail fast on invalid config."""
291
- if not 0 < self.numeric_tolerance < 1:
292
- raise ValueError(f"numeric_tolerance must be in (0, 1), got {self.numeric_tolerance}")
293
- if not 0 < self.comp_ratio_floor <= 1:
294
- raise ValueError(f"comp_ratio_floor must be in (0, 1], got {self.comp_ratio_floor}")
295
- if self.time_tolerance_ms <= 0:
296
- raise ValueError(f"time_tolerance_ms must be positive, got {self.time_tolerance_ms}")
297
- if not 0 < self.ppl_tolerance < 1:
298
- raise ValueError(f"ppl_tolerance must be in (0, 1), got {self.ppl_tolerance}")
299
-
300
- @dataclass
301
- class CompressionConfig:
302
- """Research-grade configuration for RocketKV-enhanced SPG methods."""
303
- # Core settings
304
- compression_type: CompressionType = CompressionType.ENHANCED_SPG
305
- seed: int = 42
306
-
307
- # Enhanced SPG configuration
308
- enhanced_spg_config: EnhancedSPGConfig = field(default_factory=EnhancedSPGConfig)
309
-
310
- # Proving configuration
311
- proving: ProvingConfig = field(default_factory=ProvingConfig)
312
-
313
- # Evaluation settings with validation
314
- eval_samples: int = 50
315
- prefill_length: int = 512
316
- generation_length: int = 64
317
- batch_size: int = 1
318
- warmup_steps: int = 3
319
- n_seeds: int = 3
320
-
321
- # Statistical validation
322
- n_bootstrap: int = 500
323
- confidence_level: float = 0.95
324
-
325
- # Dataset configuration
326
- dataset_name: str = "wikitext"
327
- dataset_config: str = "wikitext-2-raw-v1"
328
- dataset_split: str = "test"
329
-
330
- # Memory and system settings
331
- clear_cache_between_runs: bool = True
332
- use_memory_snapshot: bool = True
333
- fail_on_cpu_fallback: bool = True # CHANGED: Default to True for strict compliance
334
-
335
- # Output settings
336
- generate_latex: bool = True
337
- save_intermediate_results: bool = True
338
-
339
- # System info (auto-populated, no hardcoding)
340
- torch_version: str = field(default_factory=lambda: torch.__version__)
341
- transformers_version: str = field(default_factory=lambda: transformers.__version__)
342
- cuda_version: str = field(default_factory=lambda: torch.version.cuda if torch.cuda.is_available() else "cpu")
343
- device_name: str = field(default_factory=lambda: torch.cuda.get_device_name() if torch.cuda.is_available() else "cpu")
344
- timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
345
-
346
- def __post_init__(self):
347
- """Comprehensive validation - fail fast on any invalid parameter."""
348
- constants = ResearchConstants()
349
-
350
- # Validate core parameters
351
- if not isinstance(self.seed, int) or self.seed < 0:
352
- raise ValueError(f"seed must be non-negative integer, got {self.seed}")
353
-
354
- # Validate evaluation parameters
355
- if not constants.MIN_EVAL_SAMPLES <= self.eval_samples <= constants.MAX_EVAL_SAMPLES:
356
- logger.warning(f"eval_samples {self.eval_samples} outside recommended range [{constants.MIN_EVAL_SAMPLES}, {constants.MAX_EVAL_SAMPLES}]")
357
-
358
- if not constants.MIN_SEQUENCE_LENGTH <= self.prefill_length <= constants.MAX_SEQUENCE_LENGTH:
359
- logger.warning(f"prefill_length {self.prefill_length} outside range [{constants.MIN_SEQUENCE_LENGTH}, {constants.MAX_SEQUENCE_LENGTH}]")
360
-
361
- if self.generation_length <= 0:
362
- raise ValueError(f"generation_length must be positive, got {self.generation_length}")
363
-
364
- if not 1 <= self.n_seeds <= 10:
365
- logger.warning(f"n_seeds {self.n_seeds} outside recommended range [1, 10]")
366
-
367
- # Validate statistical parameters
368
- if not 0.5 <= self.confidence_level < 1.0:
369
- raise ValueError(f"confidence_level must be in [0.5, 1.0), got {self.confidence_level}")
370
-
371
- if not 100 <= self.n_bootstrap <= 10000:
372
- logger.warning(f"n_bootstrap {self.n_bootstrap} outside recommended range [100, 10000]")
373
-
374
- logger.info("RocketKV-enhanced SPG config validated successfully")
375
-
376
- def to_json(self) -> str:
377
- """Export config for reproducibility."""
378
- config_dict = asdict(self)
379
- config_dict['compression_type'] = self.compression_type.value
380
- return json.dumps(config_dict, indent=2, default=str)
381
-
382
- def get_hash(self) -> str:
383
- """Get deterministic hash for caching."""
384
- return hashlib.md5(self.to_json().encode()).hexdigest()[:8]