Update core/graph_mamba.py
Browse files- core/graph_mamba.py +81 -36
core/graph_mamba.py
CHANGED
@@ -5,8 +5,7 @@ from .graph_sequencer import GraphSequencer, PositionalEncoder
|
|
5 |
|
6 |
class GraphMamba(nn.Module):
|
7 |
"""
|
8 |
-
Production Graph-Mamba model
|
9 |
-
Device-safe implementation with dynamic handling
|
10 |
"""
|
11 |
|
12 |
def __init__(self, config):
|
@@ -19,13 +18,13 @@ class GraphMamba(nn.Module):
|
|
19 |
self.ordering_strategy = config['ordering']['strategy']
|
20 |
|
21 |
# Input projection (dynamic input dimension)
|
22 |
-
self.input_proj = None
|
23 |
|
24 |
# Positional encoding
|
25 |
self.pos_encoder = PositionalEncoder()
|
26 |
-
self.pos_embed = nn.Linear(11, self.d_model)
|
27 |
|
28 |
-
# Mamba layers
|
29 |
self.mamba_layers = nn.ModuleList([
|
30 |
MambaBlock(
|
31 |
d_model=self.d_model,
|
@@ -48,27 +47,36 @@ class GraphMamba(nn.Module):
|
|
48 |
# Graph sequencer
|
49 |
self.sequencer = GraphSequencer()
|
50 |
|
51 |
-
# Classification head (
|
52 |
self.classifier = None
|
53 |
|
|
|
|
|
|
|
54 |
def _init_input_proj(self, input_dim, device):
|
55 |
"""Initialize input projection dynamically"""
|
56 |
if self.input_proj is None:
|
57 |
-
self.input_proj = nn.
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def _init_classifier(self, num_classes, device):
|
60 |
"""Initialize classifier dynamically"""
|
61 |
if self.classifier is None:
|
62 |
-
self.classifier = nn.
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def forward(self, x, edge_index, batch=None):
|
65 |
"""
|
66 |
-
Forward pass with
|
67 |
-
|
68 |
-
Args:
|
69 |
-
x: Node features (num_nodes, input_dim)
|
70 |
-
edge_index: Edge connectivity (2, num_edges)
|
71 |
-
batch: Batch assignment (num_nodes,) - optional
|
72 |
"""
|
73 |
num_nodes = x.size(0)
|
74 |
input_dim = x.size(1)
|
@@ -93,22 +101,31 @@ class GraphMamba(nn.Module):
|
|
93 |
return h
|
94 |
|
95 |
def _process_single_graph(self, h, edge_index):
|
96 |
-
"""Process a single graph
|
97 |
num_nodes = h.size(0)
|
98 |
device = h.device
|
99 |
|
100 |
# Ensure edge_index is on correct device
|
101 |
edge_index = edge_index.to(device)
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# Ensure order is on correct device
|
114 |
order = order.to(device)
|
@@ -125,10 +142,17 @@ class GraphMamba(nn.Module):
|
|
125 |
h_ordered = h[order] + pos_embed[order] # Add positional encoding
|
126 |
h_ordered = h_ordered.unsqueeze(0) # (1, num_nodes, d_model)
|
127 |
|
128 |
-
# Process through Mamba layers
|
129 |
-
for mamba, ln in zip(self.mamba_layers, self.layer_norms):
|
130 |
-
# Pre-norm residual connection
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Restore original order
|
134 |
h_out = h_ordered.squeeze(0) # (num_nodes, d_model)
|
@@ -140,7 +164,7 @@ class GraphMamba(nn.Module):
|
|
140 |
return h_final
|
141 |
|
142 |
def _process_batch(self, h, edge_index, batch):
|
143 |
-
"""Process batched graphs
|
144 |
device = h.device
|
145 |
batch = batch.to(device)
|
146 |
edge_index = edge_index.to(device)
|
@@ -180,12 +204,19 @@ class GraphMamba(nn.Module):
|
|
180 |
return h_out
|
181 |
|
182 |
def get_graph_embedding(self, h, batch=None):
|
183 |
-
"""Get graph-level representation"""
|
184 |
if batch is None:
|
185 |
-
# Single graph -
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
else:
|
188 |
-
# Batched graphs
|
189 |
device = h.device
|
190 |
batch = batch.to(device)
|
191 |
batch_size = batch.max().item() + 1
|
@@ -194,9 +225,23 @@ class GraphMamba(nn.Module):
|
|
194 |
for b in range(batch_size):
|
195 |
mask = batch == b
|
196 |
if mask.any():
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
graph_embeddings.append(graph_emb)
|
199 |
else:
|
200 |
-
|
|
|
201 |
|
202 |
-
return torch.stack(graph_embeddings)
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class GraphMamba(nn.Module):
|
7 |
"""
|
8 |
+
Production Graph-Mamba model with training optimizations
|
|
|
9 |
"""
|
10 |
|
11 |
def __init__(self, config):
|
|
|
18 |
self.ordering_strategy = config['ordering']['strategy']
|
19 |
|
20 |
# Input projection (dynamic input dimension)
|
21 |
+
self.input_proj = None
|
22 |
|
23 |
# Positional encoding
|
24 |
self.pos_encoder = PositionalEncoder()
|
25 |
+
self.pos_embed = nn.Linear(11, self.d_model)
|
26 |
|
27 |
+
# Mamba layers with residual connections
|
28 |
self.mamba_layers = nn.ModuleList([
|
29 |
MambaBlock(
|
30 |
d_model=self.d_model,
|
|
|
47 |
# Graph sequencer
|
48 |
self.sequencer = GraphSequencer()
|
49 |
|
50 |
+
# Classification head (initialized dynamically)
|
51 |
self.classifier = None
|
52 |
|
53 |
+
# Cache for efficiency
|
54 |
+
self._cache = {}
|
55 |
+
|
56 |
def _init_input_proj(self, input_dim, device):
|
57 |
"""Initialize input projection dynamically"""
|
58 |
if self.input_proj is None:
|
59 |
+
self.input_proj = nn.Sequential(
|
60 |
+
nn.Linear(input_dim, self.d_model),
|
61 |
+
nn.LayerNorm(self.d_model),
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.Dropout(self.dropout * 0.5)
|
64 |
+
).to(device)
|
65 |
|
66 |
def _init_classifier(self, num_classes, device):
|
67 |
"""Initialize classifier dynamically"""
|
68 |
if self.classifier is None:
|
69 |
+
self.classifier = nn.Sequential(
|
70 |
+
nn.Linear(self.d_model, self.d_model // 2),
|
71 |
+
nn.LayerNorm(self.d_model // 2),
|
72 |
+
nn.ReLU(),
|
73 |
+
nn.Dropout(self.dropout),
|
74 |
+
nn.Linear(self.d_model // 2, num_classes)
|
75 |
+
).to(device)
|
76 |
|
77 |
def forward(self, x, edge_index, batch=None):
|
78 |
"""
|
79 |
+
Forward pass with training optimizations
|
|
|
|
|
|
|
|
|
|
|
80 |
"""
|
81 |
num_nodes = x.size(0)
|
82 |
input_dim = x.size(1)
|
|
|
101 |
return h
|
102 |
|
103 |
def _process_single_graph(self, h, edge_index):
|
104 |
+
"""Process a single graph with caching"""
|
105 |
num_nodes = h.size(0)
|
106 |
device = h.device
|
107 |
|
108 |
# Ensure edge_index is on correct device
|
109 |
edge_index = edge_index.to(device)
|
110 |
|
111 |
+
# Cache key for ordering
|
112 |
+
cache_key = f"{self.ordering_strategy}_{num_nodes}_{edge_index.shape[1]}"
|
113 |
+
|
114 |
+
# Get ordering (with caching during training)
|
115 |
+
if cache_key not in self._cache or not self.training:
|
116 |
+
if self.ordering_strategy == "spectral":
|
117 |
+
order = self.sequencer.spectral_ordering(edge_index, num_nodes)
|
118 |
+
elif self.ordering_strategy == "degree":
|
119 |
+
order = self.sequencer.degree_ordering(edge_index, num_nodes)
|
120 |
+
elif self.ordering_strategy == "community":
|
121 |
+
order = self.sequencer.community_ordering(edge_index, num_nodes)
|
122 |
+
else: # default to BFS
|
123 |
+
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
124 |
+
|
125 |
+
if self.training:
|
126 |
+
self._cache[cache_key] = order
|
127 |
+
else:
|
128 |
+
order = self._cache[cache_key]
|
129 |
|
130 |
# Ensure order is on correct device
|
131 |
order = order.to(device)
|
|
|
142 |
h_ordered = h[order] + pos_embed[order] # Add positional encoding
|
143 |
h_ordered = h_ordered.unsqueeze(0) # (1, num_nodes, d_model)
|
144 |
|
145 |
+
# Process through Mamba layers with residual connections
|
146 |
+
for i, (mamba, ln) in enumerate(zip(self.mamba_layers, self.layer_norms)):
|
147 |
+
# Pre-norm residual connection with gradient scaling
|
148 |
+
residual = h_ordered
|
149 |
+
h_ordered = ln(h_ordered)
|
150 |
+
h_ordered = mamba(h_ordered)
|
151 |
+
h_ordered = residual + self.dropout_layer(h_ordered)
|
152 |
+
|
153 |
+
# Layer-wise learning rate scaling
|
154 |
+
if self.training:
|
155 |
+
h_ordered = h_ordered * (1.0 - 0.1 * i / self.n_layers)
|
156 |
|
157 |
# Restore original order
|
158 |
h_out = h_ordered.squeeze(0) # (num_nodes, d_model)
|
|
|
164 |
return h_final
|
165 |
|
166 |
def _process_batch(self, h, edge_index, batch):
|
167 |
+
"""Process batched graphs efficiently"""
|
168 |
device = h.device
|
169 |
batch = batch.to(device)
|
170 |
edge_index = edge_index.to(device)
|
|
|
204 |
return h_out
|
205 |
|
206 |
def get_graph_embedding(self, h, batch=None):
|
207 |
+
"""Get graph-level representation with multiple pooling"""
|
208 |
if batch is None:
|
209 |
+
# Single graph - multiple pooling strategies
|
210 |
+
mean_pool = h.mean(dim=0, keepdim=True)
|
211 |
+
max_pool = h.max(dim=0)[0].unsqueeze(0)
|
212 |
+
|
213 |
+
# Attention pooling
|
214 |
+
attn_weights = torch.softmax(h.sum(dim=1), dim=0)
|
215 |
+
attn_pool = (h * attn_weights.unsqueeze(1)).sum(dim=0, keepdim=True)
|
216 |
+
|
217 |
+
return torch.cat([mean_pool, max_pool, attn_pool], dim=1)
|
218 |
else:
|
219 |
+
# Batched graphs
|
220 |
device = h.device
|
221 |
batch = batch.to(device)
|
222 |
batch_size = batch.max().item() + 1
|
|
|
225 |
for b in range(batch_size):
|
226 |
mask = batch == b
|
227 |
if mask.any():
|
228 |
+
batch_h = h[mask]
|
229 |
+
|
230 |
+
# Multiple pooling for this graph
|
231 |
+
mean_pool = batch_h.mean(dim=0)
|
232 |
+
max_pool = batch_h.max(dim=0)[0]
|
233 |
+
|
234 |
+
attn_weights = torch.softmax(batch_h.sum(dim=1), dim=0)
|
235 |
+
attn_pool = (batch_h * attn_weights.unsqueeze(1)).sum(dim=0)
|
236 |
+
|
237 |
+
graph_emb = torch.cat([mean_pool, max_pool, attn_pool])
|
238 |
graph_embeddings.append(graph_emb)
|
239 |
else:
|
240 |
+
# Empty graph
|
241 |
+
graph_embeddings.append(torch.zeros(h.size(1) * 3, device=device))
|
242 |
|
243 |
+
return torch.stack(graph_embeddings)
|
244 |
+
|
245 |
+
def clear_cache(self):
|
246 |
+
"""Clear ordering cache"""
|
247 |
+
self._cache.clear()
|