Update core/graph_sequencer.py
Browse files- core/graph_sequencer.py +166 -83
core/graph_sequencer.py
CHANGED
@@ -3,28 +3,39 @@ import numpy as np
|
|
3 |
import networkx as nx
|
4 |
from scipy.sparse.linalg import eigsh
|
5 |
from sklearn.cluster import SpectralClustering
|
6 |
-
|
7 |
-
|
8 |
|
9 |
class GraphSequencer:
|
10 |
"""
|
11 |
Production-ready graph ordering strategies
|
12 |
-
|
13 |
"""
|
14 |
|
15 |
@staticmethod
|
16 |
def bfs_ordering(edge_index, num_nodes, start_node=None):
|
17 |
-
"""Breadth-first search ordering"""
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
edge_list = edge_index.t().cpu().numpy()
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Start from highest degree node if not specified
|
25 |
if start_node is None:
|
26 |
-
degrees =
|
27 |
-
start_node =
|
28 |
|
29 |
# BFS traversal
|
30 |
visited = set()
|
@@ -33,15 +44,15 @@ class GraphSequencer:
|
|
33 |
|
34 |
while queue:
|
35 |
node = queue.pop(0)
|
36 |
-
if node in visited:
|
37 |
continue
|
38 |
|
39 |
visited.add(node)
|
40 |
order.append(node)
|
41 |
|
42 |
# Add neighbors by degree (deterministic)
|
43 |
-
neighbors =
|
44 |
-
neighbors.sort(key=lambda n:
|
45 |
|
46 |
for neighbor in neighbors:
|
47 |
if neighbor not in visited:
|
@@ -52,35 +63,64 @@ class GraphSequencer:
|
|
52 |
if node not in visited:
|
53 |
order.append(node)
|
54 |
|
55 |
-
return torch.tensor(order, dtype=torch.long)
|
56 |
|
57 |
@staticmethod
|
58 |
def spectral_ordering(edge_index, num_nodes):
|
59 |
-
"""Spectral ordering using graph Laplacian eigenvector"""
|
|
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
-
#
|
62 |
-
|
63 |
|
64 |
# Create adjacency matrix
|
65 |
A = np.zeros((num_nodes, num_nodes))
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
# Degree matrix
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Normalized Laplacian: L = D^(-1/2) * (D - A) * D^(-1/2)
|
73 |
-
|
|
|
74 |
L = D_sqrt_inv @ (D - A) @ D_sqrt_inv
|
75 |
|
76 |
-
# Compute
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
return torch.tensor(order, dtype=torch.long)
|
84 |
|
85 |
except Exception as e:
|
86 |
print(f"Spectral ordering failed: {e}, falling back to degree ordering")
|
@@ -88,35 +128,61 @@ class GraphSequencer:
|
|
88 |
|
89 |
@staticmethod
|
90 |
def degree_ordering(edge_index, num_nodes):
|
91 |
-
"""Order nodes by degree (high to low)"""
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
degrees
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Sort by degree (descending), then by node index for determinism
|
98 |
-
|
|
|
99 |
|
100 |
return order
|
101 |
|
102 |
@staticmethod
|
103 |
def community_ordering(edge_index, num_nodes, n_clusters=None):
|
104 |
-
"""Community-aware ordering
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
106 |
if n_clusters is None:
|
107 |
-
n_clusters = max(2, min(10, num_nodes
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
A = np.zeros((num_nodes, num_nodes))
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Spectral clustering
|
116 |
clustering = SpectralClustering(
|
117 |
n_clusters=n_clusters,
|
118 |
affinity='precomputed',
|
119 |
-
random_state=42
|
|
|
120 |
)
|
121 |
|
122 |
labels = clustering.fit_predict(A)
|
@@ -127,36 +193,30 @@ class GraphSequencer:
|
|
127 |
order = []
|
128 |
for cluster in range(n_clusters):
|
129 |
cluster_nodes = np.where(labels == cluster)[0]
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
except Exception as e:
|
137 |
print(f"Community ordering failed: {e}, falling back to BFS ordering")
|
138 |
return GraphSequencer.bfs_ordering(edge_index, num_nodes)
|
139 |
-
|
140 |
-
@staticmethod
|
141 |
-
def multi_view_ordering(edge_index, num_nodes):
|
142 |
-
"""Generate multiple orderings for different perspectives"""
|
143 |
-
orderings = {}
|
144 |
-
|
145 |
-
# Primary orderings
|
146 |
-
orderings['bfs'] = GraphSequencer.bfs_ordering(edge_index, num_nodes)
|
147 |
-
orderings['degree'] = GraphSequencer.degree_ordering(edge_index, num_nodes)
|
148 |
-
orderings['spectral'] = GraphSequencer.spectral_ordering(edge_index, num_nodes)
|
149 |
-
orderings['community'] = GraphSequencer.community_ordering(edge_index, num_nodes)
|
150 |
-
|
151 |
-
return orderings
|
152 |
|
153 |
class PositionalEncoder:
|
154 |
-
"""Graph-aware positional encoding"""
|
155 |
|
156 |
@staticmethod
|
157 |
def encode_positions(x, edge_index, order, max_dist=10):
|
158 |
"""
|
159 |
Create positional encodings that preserve graph structure
|
|
|
160 |
"""
|
161 |
num_nodes = x.size(0)
|
162 |
device = x.device
|
@@ -164,30 +224,53 @@ class PositionalEncoder:
|
|
164 |
# Sequential positions
|
165 |
seq_pos = torch.zeros(num_nodes, device=device)
|
166 |
seq_pos[order] = torch.arange(num_nodes, device=device, dtype=torch.float)
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
return seq_pos.unsqueeze(1), distances
|
|
|
3 |
import networkx as nx
|
4 |
from scipy.sparse.linalg import eigsh
|
5 |
from sklearn.cluster import SpectralClustering
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings('ignore')
|
8 |
|
9 |
class GraphSequencer:
|
10 |
"""
|
11 |
Production-ready graph ordering strategies
|
12 |
+
Device-safe implementation with performance optimizations
|
13 |
"""
|
14 |
|
15 |
@staticmethod
|
16 |
def bfs_ordering(edge_index, num_nodes, start_node=None):
|
17 |
+
"""Breadth-first search ordering - optimized version"""
|
18 |
+
device = edge_index.device
|
19 |
+
|
20 |
+
if num_nodes <= 1:
|
21 |
+
return torch.arange(num_nodes, device=device)
|
22 |
+
|
23 |
+
# Convert to adjacency list efficiently
|
24 |
+
adj_list = [[] for _ in range(num_nodes)]
|
25 |
edge_list = edge_index.t().cpu().numpy()
|
26 |
+
|
27 |
+
for src, dst in edge_list:
|
28 |
+
if src < num_nodes and dst < num_nodes:
|
29 |
+
adj_list[src].append(dst)
|
30 |
+
adj_list[dst].append(src)
|
31 |
+
|
32 |
+
# Remove duplicates and sort for determinism
|
33 |
+
adj_list = [sorted(list(set(neighbors))) for neighbors in adj_list]
|
34 |
|
35 |
# Start from highest degree node if not specified
|
36 |
if start_node is None:
|
37 |
+
degrees = [len(neighbors) for neighbors in adj_list]
|
38 |
+
start_node = np.argmax(degrees) if degrees else 0
|
39 |
|
40 |
# BFS traversal
|
41 |
visited = set()
|
|
|
44 |
|
45 |
while queue:
|
46 |
node = queue.pop(0)
|
47 |
+
if node in visited or node >= num_nodes:
|
48 |
continue
|
49 |
|
50 |
visited.add(node)
|
51 |
order.append(node)
|
52 |
|
53 |
# Add neighbors by degree (deterministic)
|
54 |
+
neighbors = adj_list[node]
|
55 |
+
neighbors.sort(key=lambda n: (len(adj_list[n]), n), reverse=True)
|
56 |
|
57 |
for neighbor in neighbors:
|
58 |
if neighbor not in visited:
|
|
|
63 |
if node not in visited:
|
64 |
order.append(node)
|
65 |
|
66 |
+
return torch.tensor(order, dtype=torch.long, device=device)
|
67 |
|
68 |
@staticmethod
|
69 |
def spectral_ordering(edge_index, num_nodes):
|
70 |
+
"""Spectral ordering using graph Laplacian eigenvector - robust version"""
|
71 |
+
device = edge_index.device
|
72 |
+
|
73 |
+
if num_nodes <= 2:
|
74 |
+
return torch.arange(num_nodes, device=device)
|
75 |
+
|
76 |
try:
|
77 |
+
# Move to CPU for scipy operations
|
78 |
+
edge_index_cpu = edge_index.cpu().numpy()
|
79 |
|
80 |
# Create adjacency matrix
|
81 |
A = np.zeros((num_nodes, num_nodes))
|
82 |
+
valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
|
83 |
+
valid_edge_index = edge_index_cpu[:, valid_edges]
|
84 |
+
|
85 |
+
A[valid_edge_index[0], valid_edge_index[1]] = 1
|
86 |
+
A[valid_edge_index[1], valid_edge_index[0]] = 1 # Undirected
|
87 |
|
88 |
# Degree matrix
|
89 |
+
degrees = np.sum(A, axis=1)
|
90 |
+
|
91 |
+
# Handle disconnected components
|
92 |
+
if np.any(degrees == 0):
|
93 |
+
# Add self-loops to isolated nodes
|
94 |
+
isolated = degrees == 0
|
95 |
+
A[isolated, isolated] = 1
|
96 |
+
degrees = np.sum(A, axis=1)
|
97 |
+
|
98 |
+
D = np.diag(degrees)
|
99 |
|
100 |
# Normalized Laplacian: L = D^(-1/2) * (D - A) * D^(-1/2)
|
101 |
+
degrees_sqrt_inv = np.where(degrees > 0, 1.0 / np.sqrt(degrees), 0)
|
102 |
+
D_sqrt_inv = np.diag(degrees_sqrt_inv)
|
103 |
L = D_sqrt_inv @ (D - A) @ D_sqrt_inv
|
104 |
|
105 |
+
# Compute eigenvectors
|
106 |
+
k = min(10, num_nodes - 1)
|
107 |
+
try:
|
108 |
+
eigenvals, eigenvecs = eigsh(L, k=k, which='SM', sigma=0.0)
|
109 |
+
|
110 |
+
# Use second smallest eigenvector (Fiedler vector)
|
111 |
+
if eigenvecs.shape[1] > 1:
|
112 |
+
fiedler_vector = eigenvecs[:, 1]
|
113 |
+
else:
|
114 |
+
fiedler_vector = eigenvecs[:, 0]
|
115 |
+
|
116 |
+
# Order by Fiedler vector values
|
117 |
+
order = np.argsort(fiedler_vector)
|
118 |
+
|
119 |
+
except Exception:
|
120 |
+
# Fallback to degree ordering
|
121 |
+
order = np.argsort(-degrees)
|
122 |
|
123 |
+
return torch.tensor(order, dtype=torch.long, device=device)
|
124 |
|
125 |
except Exception as e:
|
126 |
print(f"Spectral ordering failed: {e}, falling back to degree ordering")
|
|
|
128 |
|
129 |
@staticmethod
|
130 |
def degree_ordering(edge_index, num_nodes):
|
131 |
+
"""Order nodes by degree (high to low) - optimized version"""
|
132 |
+
device = edge_index.device
|
133 |
+
|
134 |
+
# Count degrees efficiently
|
135 |
+
degrees = torch.zeros(num_nodes, dtype=torch.long, device=device)
|
136 |
+
|
137 |
+
if edge_index.shape[1] > 0:
|
138 |
+
# Ensure valid indices
|
139 |
+
valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
|
140 |
+
valid_edges = edge_index[:, valid_mask]
|
141 |
+
|
142 |
+
if valid_edges.shape[1] > 0:
|
143 |
+
degrees.index_add_(0, valid_edges[0], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
|
144 |
+
degrees.index_add_(0, valid_edges[1], torch.ones(valid_edges.shape[1], dtype=torch.long, device=device))
|
145 |
|
146 |
# Sort by degree (descending), then by node index for determinism
|
147 |
+
node_indices = torch.arange(num_nodes, device=device)
|
148 |
+
_, order = torch.sort(-degrees * num_nodes - node_indices)
|
149 |
|
150 |
return order
|
151 |
|
152 |
@staticmethod
|
153 |
def community_ordering(edge_index, num_nodes, n_clusters=None):
|
154 |
+
"""Community-aware ordering - robust version"""
|
155 |
+
device = edge_index.device
|
156 |
+
|
157 |
+
if num_nodes <= 3:
|
158 |
+
return GraphSequencer.degree_ordering(edge_index, num_nodes)
|
159 |
+
|
160 |
try:
|
161 |
if n_clusters is None:
|
162 |
+
n_clusters = max(2, min(10, int(np.sqrt(num_nodes))))
|
163 |
|
164 |
+
n_clusters = min(n_clusters, num_nodes)
|
165 |
+
|
166 |
+
# Convert to adjacency matrix on CPU
|
167 |
+
edge_index_cpu = edge_index.cpu().numpy()
|
168 |
A = np.zeros((num_nodes, num_nodes))
|
169 |
+
|
170 |
+
valid_edges = (edge_index_cpu[0] < num_nodes) & (edge_index_cpu[1] < num_nodes)
|
171 |
+
valid_edge_index = edge_index_cpu[:, valid_edges]
|
172 |
+
|
173 |
+
if valid_edge_index.shape[1] > 0:
|
174 |
+
A[valid_edge_index[0], valid_edge_index[1]] = 1
|
175 |
+
A[valid_edge_index[1], valid_edge_index[0]] = 1
|
176 |
+
|
177 |
+
# Add small diagonal for stability
|
178 |
+
A += np.eye(num_nodes) * 0.01
|
179 |
|
180 |
# Spectral clustering
|
181 |
clustering = SpectralClustering(
|
182 |
n_clusters=n_clusters,
|
183 |
affinity='precomputed',
|
184 |
+
random_state=42,
|
185 |
+
assign_labels='discretize'
|
186 |
)
|
187 |
|
188 |
labels = clustering.fit_predict(A)
|
|
|
193 |
order = []
|
194 |
for cluster in range(n_clusters):
|
195 |
cluster_nodes = np.where(labels == cluster)[0]
|
196 |
+
if len(cluster_nodes) > 0:
|
197 |
+
cluster_degrees = degrees[cluster_nodes]
|
198 |
+
cluster_order = cluster_nodes[np.argsort(-cluster_degrees)]
|
199 |
+
order.extend(cluster_order)
|
200 |
|
201 |
+
# Add any missed nodes
|
202 |
+
for i in range(num_nodes):
|
203 |
+
if i not in order:
|
204 |
+
order.append(i)
|
205 |
+
|
206 |
+
return torch.tensor(order, dtype=torch.long, device=device)
|
207 |
|
208 |
except Exception as e:
|
209 |
print(f"Community ordering failed: {e}, falling back to BFS ordering")
|
210 |
return GraphSequencer.bfs_ordering(edge_index, num_nodes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
class PositionalEncoder:
|
213 |
+
"""Graph-aware positional encoding - optimized version"""
|
214 |
|
215 |
@staticmethod
|
216 |
def encode_positions(x, edge_index, order, max_dist=10):
|
217 |
"""
|
218 |
Create positional encodings that preserve graph structure
|
219 |
+
Optimized for training stability
|
220 |
"""
|
221 |
num_nodes = x.size(0)
|
222 |
device = x.device
|
|
|
224 |
# Sequential positions
|
225 |
seq_pos = torch.zeros(num_nodes, device=device)
|
226 |
seq_pos[order] = torch.arange(num_nodes, device=device, dtype=torch.float)
|
227 |
+
seq_pos = seq_pos / max(num_nodes, 1)
|
228 |
+
|
229 |
+
# Enhanced distance encoding
|
230 |
+
distances = torch.zeros((num_nodes, max_dist), device=device)
|
231 |
|
232 |
+
if edge_index.shape[1] > 0:
|
233 |
+
# Create adjacency matrix efficiently
|
234 |
+
adj = torch.zeros(num_nodes, num_nodes, device=device, dtype=torch.bool)
|
235 |
+
|
236 |
+
# Filter valid edges
|
237 |
+
valid_mask = (edge_index[0] < num_nodes) & (edge_index[1] < num_nodes)
|
238 |
+
if valid_mask.any():
|
239 |
+
valid_edges = edge_index[:, valid_mask]
|
240 |
+
adj[valid_edges[0], valid_edges[1]] = True
|
241 |
+
adj[valid_edges[1], valid_edges[0]] = True # Undirected
|
242 |
+
|
243 |
+
# Compute 2-hop neighbors for richer encoding
|
244 |
+
adj2 = torch.matmul(adj.float(), adj.float()) > 0
|
245 |
+
|
246 |
+
# Fill distance features
|
247 |
+
for i, node in enumerate(order):
|
248 |
+
node_idx = node.item() if isinstance(node, torch.Tensor) else node
|
249 |
+
|
250 |
+
if node_idx < num_nodes:
|
251 |
+
# Get 1-hop and 2-hop neighbors
|
252 |
+
neighbors_1hop = torch.where(adj[node_idx])[0]
|
253 |
+
neighbors_2hop = torch.where(adj2[node_idx] & ~adj[node_idx])[0]
|
254 |
+
|
255 |
+
# Fill distance features based on order position
|
256 |
+
start_idx = max(0, i - max_dist)
|
257 |
+
for j in range(start_idx, i):
|
258 |
+
if j - start_idx < max_dist:
|
259 |
+
prev_node = order[j]
|
260 |
+
prev_idx = prev_node.item() if isinstance(prev_node, torch.Tensor) else prev_node
|
261 |
+
|
262 |
+
if prev_idx < num_nodes:
|
263 |
+
# Multi-scale distance encoding
|
264 |
+
if prev_idx in neighbors_1hop:
|
265 |
+
distances[node_idx, j - start_idx] = 0.9 # Direct neighbor
|
266 |
+
elif prev_idx in neighbors_2hop:
|
267 |
+
distances[node_idx, j - start_idx] = 0.6 # 2-hop neighbor
|
268 |
+
else:
|
269 |
+
distances[node_idx, j - start_idx] = 0.3 # Distant
|
270 |
+
else:
|
271 |
+
# No edges - use position-based encoding
|
272 |
+
for i in range(num_nodes):
|
273 |
+
for j in range(max_dist):
|
274 |
+
distances[i, j] = (max_dist - j) / max_dist
|
275 |
|
276 |
return seq_pos.unsqueeze(1), distances
|