Create core/graph_mamba.py
Browse files- core/graph_mamba.py +162 -0
    	
        core/graph_mamba.py
    ADDED
    
    | @@ -0,0 +1,162 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            from .mamba_block import MambaBlock
         | 
| 4 | 
            +
            from .graph_sequencer import GraphSequencer, PositionalEncoder
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            class GraphMamba(nn.Module):
         | 
| 7 | 
            +
                """
         | 
| 8 | 
            +
                Production Graph-Mamba model
         | 
| 9 | 
            +
                Dynamically handles any graph size and structure
         | 
| 10 | 
            +
                """
         | 
| 11 | 
            +
                
         | 
| 12 | 
            +
                def __init__(self, config):
         | 
| 13 | 
            +
                    super().__init__()
         | 
| 14 | 
            +
                    
         | 
| 15 | 
            +
                    self.config = config
         | 
| 16 | 
            +
                    self.d_model = config['model']['d_model']
         | 
| 17 | 
            +
                    self.n_layers = config['model']['n_layers']
         | 
| 18 | 
            +
                    self.dropout = config['model']['dropout']
         | 
| 19 | 
            +
                    self.ordering_strategy = config['ordering']['strategy']
         | 
| 20 | 
            +
                    
         | 
| 21 | 
            +
                    # Input projection (dynamic input dimension)
         | 
| 22 | 
            +
                    self.input_proj = None  # Will be initialized on first forward
         | 
| 23 | 
            +
                    
         | 
| 24 | 
            +
                    # Positional encoding
         | 
| 25 | 
            +
                    self.pos_encoder = PositionalEncoder()
         | 
| 26 | 
            +
                    self.pos_embed = nn.Linear(11, self.d_model)  # 1 + 10 distances
         | 
| 27 | 
            +
                    
         | 
| 28 | 
            +
                    # Mamba layers
         | 
| 29 | 
            +
                    self.mamba_layers = nn.ModuleList([
         | 
| 30 | 
            +
                        MambaBlock(
         | 
| 31 | 
            +
                            d_model=self.d_model,
         | 
| 32 | 
            +
                            d_state=config['model']['d_state'],
         | 
| 33 | 
            +
                            d_conv=config['model']['d_conv'],
         | 
| 34 | 
            +
                            expand=config['model']['expand']
         | 
| 35 | 
            +
                        )
         | 
| 36 | 
            +
                        for _ in range(self.n_layers)
         | 
| 37 | 
            +
                    ])
         | 
| 38 | 
            +
                    
         | 
| 39 | 
            +
                    # Layer norms
         | 
| 40 | 
            +
                    self.layer_norms = nn.ModuleList([
         | 
| 41 | 
            +
                        nn.LayerNorm(self.d_model)
         | 
| 42 | 
            +
                        for _ in range(self.n_layers)
         | 
| 43 | 
            +
                    ])
         | 
| 44 | 
            +
                    
         | 
| 45 | 
            +
                    # Dropout
         | 
| 46 | 
            +
                    self.dropout_layer = nn.Dropout(self.dropout)
         | 
| 47 | 
            +
                    
         | 
| 48 | 
            +
                    # Graph sequencer
         | 
| 49 | 
            +
                    self.sequencer = GraphSequencer()
         | 
| 50 | 
            +
                    
         | 
| 51 | 
            +
                def _init_input_proj(self, input_dim):
         | 
| 52 | 
            +
                    """Initialize input projection dynamically"""
         | 
| 53 | 
            +
                    if self.input_proj is None:
         | 
| 54 | 
            +
                        self.input_proj = nn.Linear(input_dim, self.d_model)
         | 
| 55 | 
            +
                        
         | 
| 56 | 
            +
                def forward(self, x, edge_index, batch=None):
         | 
| 57 | 
            +
                    """
         | 
| 58 | 
            +
                    Forward pass with dynamic graph handling
         | 
| 59 | 
            +
                    
         | 
| 60 | 
            +
                    Args:
         | 
| 61 | 
            +
                        x: Node features (num_nodes, input_dim) 
         | 
| 62 | 
            +
                        edge_index: Edge connectivity (2, num_edges)
         | 
| 63 | 
            +
                        batch: Batch assignment (num_nodes,) - optional
         | 
| 64 | 
            +
                    """
         | 
| 65 | 
            +
                    num_nodes = x.size(0)
         | 
| 66 | 
            +
                    input_dim = x.size(1)
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                    # Initialize input projection if needed
         | 
| 69 | 
            +
                    self._init_input_proj(input_dim)
         | 
| 70 | 
            +
                    
         | 
| 71 | 
            +
                    # Project input features
         | 
| 72 | 
            +
                    h = self.input_proj(x)  # (num_nodes, d_model)
         | 
| 73 | 
            +
                    
         | 
| 74 | 
            +
                    if batch is None:
         | 
| 75 | 
            +
                        # Single graph processing
         | 
| 76 | 
            +
                        h = self._process_single_graph(h, edge_index)
         | 
| 77 | 
            +
                    else:
         | 
| 78 | 
            +
                        # Batch processing
         | 
| 79 | 
            +
                        h = self._process_batch(h, edge_index, batch)
         | 
| 80 | 
            +
                        
         | 
| 81 | 
            +
                    return h
         | 
| 82 | 
            +
                
         | 
| 83 | 
            +
                def _process_single_graph(self, h, edge_index):
         | 
| 84 | 
            +
                    """Process a single graph"""
         | 
| 85 | 
            +
                    num_nodes = h.size(0)
         | 
| 86 | 
            +
                    
         | 
| 87 | 
            +
                    # Get ordering
         | 
| 88 | 
            +
                    if self.ordering_strategy == "multi_view":
         | 
| 89 | 
            +
                        # Use BFS as primary for now (can be extended)
         | 
| 90 | 
            +
                        order = self.sequencer.bfs_ordering(edge_index, num_nodes)
         | 
| 91 | 
            +
                    elif self.ordering_strategy == "spectral":
         | 
| 92 | 
            +
                        order = self.sequencer.spectral_ordering(edge_index, num_nodes)
         | 
| 93 | 
            +
                    elif self.ordering_strategy == "degree":
         | 
| 94 | 
            +
                        order = self.sequencer.degree_ordering(edge_index, num_nodes)
         | 
| 95 | 
            +
                    else:  # default to BFS
         | 
| 96 | 
            +
                        order = self.sequencer.bfs_ordering(edge_index, num_nodes)
         | 
| 97 | 
            +
                    
         | 
| 98 | 
            +
                    # Add positional encoding
         | 
| 99 | 
            +
                    seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
         | 
| 100 | 
            +
                    pos_features = torch.cat([seq_pos, distances], dim=1)  # (num_nodes, 11)
         | 
| 101 | 
            +
                    pos_embed = self.pos_embed(pos_features)
         | 
| 102 | 
            +
                    
         | 
| 103 | 
            +
                    # Reorder nodes for sequential processing
         | 
| 104 | 
            +
                    h_ordered = h[order] + pos_embed[order]  # Add positional encoding
         | 
| 105 | 
            +
                    h_ordered = h_ordered.unsqueeze(0)  # (1, num_nodes, d_model)
         | 
| 106 | 
            +
                    
         | 
| 107 | 
            +
                    # Process through Mamba layers
         | 
| 108 | 
            +
                    for mamba, ln in zip(self.mamba_layers, self.layer_norms):
         | 
| 109 | 
            +
                        # Pre-norm residual connection
         | 
| 110 | 
            +
                        h_ordered = h_ordered + self.dropout_layer(mamba(ln(h_ordered)))
         | 
| 111 | 
            +
                    
         | 
| 112 | 
            +
                    # Restore original order
         | 
| 113 | 
            +
                    h_out = h_ordered.squeeze(0)  # (num_nodes, d_model)
         | 
| 114 | 
            +
                    
         | 
| 115 | 
            +
                    # Create inverse mapping
         | 
| 116 | 
            +
                    inverse_order = torch.argsort(order)
         | 
| 117 | 
            +
                    h_final = h_out[inverse_order]
         | 
| 118 | 
            +
                    
         | 
| 119 | 
            +
                    return h_final
         | 
| 120 | 
            +
                
         | 
| 121 | 
            +
                def _process_batch(self, h, edge_index, batch):
         | 
| 122 | 
            +
                    """Process batched graphs"""
         | 
| 123 | 
            +
                    batch_size = batch.max().item() + 1
         | 
| 124 | 
            +
                    outputs = []
         | 
| 125 | 
            +
                    
         | 
| 126 | 
            +
                    for b in range(batch_size):
         | 
| 127 | 
            +
                        # Extract subgraph
         | 
| 128 | 
            +
                        mask = batch == b
         | 
| 129 | 
            +
                        batch_h = h[mask]
         | 
| 130 | 
            +
                        
         | 
| 131 | 
            +
                        # Get edges for this graph
         | 
| 132 | 
            +
                        edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
         | 
| 133 | 
            +
                        batch_edges = edge_index[:, edge_mask]
         | 
| 134 | 
            +
                        
         | 
| 135 | 
            +
                        # Reindex edges to local indices
         | 
| 136 | 
            +
                        node_indices = torch.where(mask)[0]
         | 
| 137 | 
            +
                        node_map = torch.zeros(h.size(0), dtype=torch.long, device=h.device)
         | 
| 138 | 
            +
                        node_map[node_indices] = torch.arange(batch_h.size(0), device=h.device)
         | 
| 139 | 
            +
                        batch_edges_local = node_map[batch_edges]
         | 
| 140 | 
            +
                        
         | 
| 141 | 
            +
                        # Process subgraph
         | 
| 142 | 
            +
                        batch_output = self._process_single_graph(batch_h, batch_edges_local)
         | 
| 143 | 
            +
                        outputs.append(batch_output)
         | 
| 144 | 
            +
                    
         | 
| 145 | 
            +
                    # Reconstruct full batch
         | 
| 146 | 
            +
                    h_out = torch.zeros_like(h)
         | 
| 147 | 
            +
                    start_idx = 0
         | 
| 148 | 
            +
                    for b, output in enumerate(outputs):
         | 
| 149 | 
            +
                        mask = batch == b
         | 
| 150 | 
            +
                        h_out[mask] = output
         | 
| 151 | 
            +
                        
         | 
| 152 | 
            +
                    return h_out
         | 
| 153 | 
            +
                
         | 
| 154 | 
            +
                def get_graph_embedding(self, h, batch=None):
         | 
| 155 | 
            +
                    """Get graph-level representation"""
         | 
| 156 | 
            +
                    if batch is None:
         | 
| 157 | 
            +
                        # Single graph - mean pooling
         | 
| 158 | 
            +
                        return h.mean(dim=0, keepdim=True)
         | 
| 159 | 
            +
                    else:
         | 
| 160 | 
            +
                        # Batched graphs
         | 
| 161 | 
            +
                        from torch_geometric.nn import global_mean_pool
         | 
| 162 | 
            +
                        return global_mean_pool(h, batch)
         |