Create processor.py
Browse files- data/processor.py +30 -0
data/processor.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch_geometric.data import Data
|
4 |
+
|
5 |
+
class GraphProcessor:
|
6 |
+
"""Data preprocessing utilities"""
|
7 |
+
|
8 |
+
@staticmethod
|
9 |
+
def normalize_features(x):
|
10 |
+
"""Normalize node features"""
|
11 |
+
return F.normalize(x, p=2, dim=1)
|
12 |
+
|
13 |
+
@staticmethod
|
14 |
+
def add_self_loops(edge_index, num_nodes):
|
15 |
+
"""Add self loops to graph"""
|
16 |
+
self_loops = torch.arange(num_nodes).unsqueeze(0).repeat(2, 1)
|
17 |
+
edge_index = torch.cat([edge_index, self_loops], dim=1)
|
18 |
+
return edge_index
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
def to_device(data, device):
|
22 |
+
"""Move data to device safely"""
|
23 |
+
if hasattr(data, 'to'):
|
24 |
+
return data.to(device)
|
25 |
+
elif isinstance(data, (list, tuple)):
|
26 |
+
return [GraphProcessor.to_device(item, device) for item in data]
|
27 |
+
elif isinstance(data, dict):
|
28 |
+
return {k: GraphProcessor.to_device(v, device) for k, v in data.items()}
|
29 |
+
else:
|
30 |
+
return data
|