Update core/graph_mamba.py
Browse files- core/graph_mamba.py +238 -362
core/graph_mamba.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
|
4 |
-
|
5 |
"""
|
6 |
|
7 |
import torch
|
@@ -12,9 +12,7 @@ from torch_geometric.datasets import Planetoid
|
|
12 |
from torch_geometric.transforms import NormalizeFeatures
|
13 |
from torch_geometric.utils import to_undirected, add_self_loops
|
14 |
import torch.optim as optim
|
15 |
-
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
16 |
import time
|
17 |
-
import numpy as np
|
18 |
|
19 |
def get_device():
|
20 |
if torch.cuda.is_available():
|
@@ -26,347 +24,210 @@ def get_device():
|
|
26 |
print("π» Using CPU")
|
27 |
return device
|
28 |
|
29 |
-
class
|
30 |
-
"""
|
31 |
-
def __init__(self,
|
32 |
super().__init__()
|
33 |
-
self.d_model = d_model
|
34 |
-
self.d_state = d_state
|
35 |
-
self.d_inner = d_model # No expansion to reduce parameters
|
36 |
|
37 |
-
#
|
38 |
-
self.
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
-
self.
|
43 |
-
self.B_proj = nn.Linear(self.d_inner, d_state, bias=False)
|
44 |
-
self.C_proj = nn.Linear(self.d_inner, d_state, bias=False)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
#
|
52 |
-
self.
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
B, L, D = x.shape
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
B_param = self.B_proj(x_path)
|
67 |
-
C_param = self.C_proj(x_path)
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
return self.dropout(self.out_proj(y))
|
75 |
|
76 |
-
class
|
77 |
-
"""
|
78 |
-
def __init__(self,
|
79 |
super().__init__()
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Aggressive dimensionality reduction
|
86 |
-
self.input_proj = nn.Sequential(
|
87 |
-
nn.Linear(input_dim, d_model * 4),
|
88 |
nn.ReLU(),
|
89 |
-
nn.Dropout(0.
|
90 |
-
nn.Linear(
|
91 |
-
nn.LayerNorm(d_model)
|
92 |
)
|
93 |
|
94 |
-
#
|
95 |
-
self.
|
96 |
-
GCNConv(
|
97 |
-
])
|
98 |
-
|
99 |
-
self.mamba_blocks = nn.ModuleList([
|
100 |
-
TinyMambaBlock(d_model) for _ in range(n_layers)
|
101 |
-
])
|
102 |
-
|
103 |
-
self.layer_norms = nn.ModuleList([
|
104 |
-
nn.LayerNorm(d_model) for _ in range(n_layers)
|
105 |
-
])
|
106 |
-
|
107 |
-
# Massive dropout for regularization
|
108 |
-
self.dropouts = nn.ModuleList([
|
109 |
-
nn.Dropout(0.8) for _ in range(n_layers) # 80% dropout
|
110 |
-
])
|
111 |
-
|
112 |
-
# Lightweight output
|
113 |
-
self.output_proj = nn.Sequential(
|
114 |
-
nn.Dropout(0.7),
|
115 |
-
nn.Linear(d_model, d_model // 2),
|
116 |
nn.ReLU(),
|
117 |
-
nn.Dropout(0.
|
118 |
-
nn.Linear(d_model // 2, d_model)
|
119 |
)
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
# Input with heavy regularization
|
125 |
-
h = self.input_proj(x)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Skip connection from input
|
135 |
-
residual = h
|
136 |
-
|
137 |
-
# GCN path with dropout
|
138 |
-
h_gcn = dropout(F.relu(gcn(h, edge_index)))
|
139 |
-
|
140 |
-
# Mamba path with dropout
|
141 |
-
h_mamba = mamba(h.unsqueeze(0)).squeeze(0)
|
142 |
-
|
143 |
-
# Minimal combination to reduce parameters
|
144 |
-
h_combined = h_gcn * 0.7 + h_mamba * 0.3
|
145 |
-
|
146 |
-
# Strong residual connection
|
147 |
-
h = norm(residual + h_combined * 0.3) # Small update
|
148 |
-
|
149 |
-
return self.output_proj(h)
|
150 |
-
|
151 |
-
def init_classifier(self, num_classes):
|
152 |
-
"""Ultra-lightweight classifier"""
|
153 |
-
self.classifier = nn.Sequential(
|
154 |
-
nn.Dropout(0.8), # Even more dropout in classifier
|
155 |
-
nn.Linear(self.config['model']['d_model'], num_classes)
|
156 |
-
)
|
157 |
-
return self.classifier
|
158 |
|
159 |
-
class
|
160 |
-
"""
|
161 |
-
def __init__(self,
|
162 |
super().__init__()
|
163 |
-
self.config = config
|
164 |
-
d_model = config['model']['d_model']
|
165 |
-
input_dim = config.get('input_dim', 1433)
|
166 |
|
167 |
-
#
|
168 |
-
self.
|
169 |
-
nn.Linear(input_dim,
|
170 |
-
nn.
|
171 |
-
nn.Dropout(0.8),
|
172 |
-
nn.Linear(d_model * 2, d_model),
|
173 |
-
nn.LayerNorm(d_model)
|
174 |
)
|
175 |
|
176 |
-
#
|
177 |
-
self.
|
178 |
-
|
179 |
-
|
180 |
-
self.enhance = nn.Sequential(
|
181 |
-
nn.Dropout(0.7),
|
182 |
-
nn.Linear(d_model, d_model),
|
183 |
-
nn.ReLU(),
|
184 |
-
nn.Dropout(0.7),
|
185 |
-
nn.Linear(d_model, d_model)
|
186 |
)
|
|
|
187 |
|
188 |
-
|
189 |
-
self.classifier = None
|
190 |
|
191 |
-
def forward(self, x, edge_index
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
)
|
202 |
-
return self.classifier
|
203 |
-
|
204 |
-
def create_ultra_regularized_config():
|
205 |
-
"""Configuration for tiny models"""
|
206 |
-
return {
|
207 |
-
'model': {
|
208 |
-
'd_model': 16, # Extremely small
|
209 |
-
'd_state': 4,
|
210 |
-
'n_layers': 1, # Just one layer
|
211 |
-
'dropout': 0.8
|
212 |
-
},
|
213 |
-
'training': {
|
214 |
-
'learning_rate': 0.001, # Much smaller LR
|
215 |
-
'weight_decay': 0.1, # Massive weight decay
|
216 |
-
'epochs': 500, # More epochs with smaller steps
|
217 |
-
'patience': 50, # More patience
|
218 |
-
'label_smoothing': 0.3 # Label smoothing for regularization
|
219 |
-
},
|
220 |
-
'input_dim': 1433
|
221 |
-
}
|
222 |
-
|
223 |
-
def create_minimal_config():
|
224 |
-
"""Even smaller configuration"""
|
225 |
-
return {
|
226 |
-
'model': {
|
227 |
-
'd_model': 8, # Tiny
|
228 |
-
'd_state': 2,
|
229 |
-
'n_layers': 1,
|
230 |
-
'dropout': 0.9 # Extreme dropout
|
231 |
-
},
|
232 |
-
'training': {
|
233 |
-
'learning_rate': 0.0005,
|
234 |
-
'weight_decay': 0.2,
|
235 |
-
'epochs': 1000,
|
236 |
-
'patience': 100,
|
237 |
-
'label_smoothing': 0.4
|
238 |
-
},
|
239 |
-
'input_dim': 1433
|
240 |
-
}
|
241 |
|
242 |
-
|
243 |
-
"""
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
self.optimizer, mode='min', factor=0.3, patience=20, min_lr=1e-6
|
259 |
-
)
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
#
|
266 |
-
|
267 |
-
|
268 |
-
self.patience_counter = 0
|
269 |
-
|
270 |
-
def train(self, data):
|
271 |
-
print(f"ποΈ Ultra-Regularized Training")
|
272 |
-
print(f" Parameters: {sum(p.numel() for p in self.model.parameters()):,}")
|
273 |
-
print(f" Per sample: {sum(p.numel() for p in self.model.parameters())/data.train_mask.sum().item():.1f}")
|
274 |
-
print(f" Learning rate: {self.config['training']['learning_rate']}")
|
275 |
-
print(f" Weight decay: {self.config['training']['weight_decay']}")
|
276 |
-
|
277 |
-
# Initialize classifier
|
278 |
-
num_classes = data.y.max().item() + 1
|
279 |
-
self.model.init_classifier(num_classes)
|
280 |
-
self.model.classifier = self.model.classifier.to(self.device)
|
281 |
-
|
282 |
-
history = {'train_loss': [], 'val_loss': [], 'train_acc': [], 'val_acc': []}
|
283 |
-
|
284 |
-
for epoch in range(self.config['training']['epochs']):
|
285 |
-
# Training step
|
286 |
-
self.model.train()
|
287 |
-
self.optimizer.zero_grad()
|
288 |
-
|
289 |
-
out = self.model(data.x, data.edge_index)
|
290 |
-
logits = self.model.classifier(out)
|
291 |
-
train_loss = self.criterion(logits[data.train_mask], data.y[data.train_mask])
|
292 |
-
|
293 |
-
train_loss.backward()
|
294 |
-
# Gradient clipping for stability
|
295 |
-
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5)
|
296 |
-
self.optimizer.step()
|
297 |
-
|
298 |
-
# Evaluation
|
299 |
-
self.model.eval()
|
300 |
with torch.no_grad():
|
301 |
-
out =
|
302 |
-
logits = self.model.classifier(out)
|
303 |
-
|
304 |
-
val_loss = self.criterion(logits[data.val_mask], data.y[data.val_mask])
|
305 |
|
306 |
-
train_pred =
|
307 |
train_acc = (train_pred == data.y[data.train_mask]).float().mean().item()
|
308 |
|
309 |
-
val_pred =
|
310 |
val_acc = (val_pred == data.y[data.val_mask]).float().mean().item()
|
311 |
-
|
312 |
-
# Update history
|
313 |
-
history['train_loss'].append(train_loss.item())
|
314 |
-
history['val_loss'].append(val_loss.item())
|
315 |
-
history['train_acc'].append(train_acc)
|
316 |
-
history['val_acc'].append(val_acc)
|
317 |
-
|
318 |
-
# Scheduler step
|
319 |
-
self.scheduler.step(val_loss)
|
320 |
-
|
321 |
-
# Early stopping check
|
322 |
-
if val_loss < self.best_val_loss:
|
323 |
-
self.best_val_loss = val_loss
|
324 |
-
self.patience_counter = 0
|
325 |
-
else:
|
326 |
-
self.patience_counter += 1
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
# Progress
|
333 |
-
if (epoch + 1) % 50 == 0:
|
334 |
gap = train_acc - val_acc
|
335 |
-
|
336 |
-
print(f" Epoch {epoch+1:
|
337 |
-
f"
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
|
|
|
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
'val_acc': val_acc,
|
362 |
-
'train_acc': train_acc,
|
363 |
-
'gap': gap
|
364 |
-
}
|
365 |
|
366 |
-
def
|
367 |
-
"""
|
368 |
-
print("
|
369 |
-
print("
|
370 |
print("=" * 60)
|
371 |
|
372 |
device = get_device()
|
@@ -378,90 +239,105 @@ def run_ultra_regularized_test():
|
|
378 |
data.edge_index = to_undirected(data.edge_index)
|
379 |
data.edge_index, _ = add_self_loops(data.edge_index, num_nodes=data.x.size(0))
|
380 |
|
381 |
-
print(f"β
Dataset
|
382 |
-
print(f"
|
383 |
|
384 |
-
# Test
|
385 |
-
|
386 |
-
'
|
387 |
-
'
|
|
|
388 |
}
|
389 |
|
390 |
results = {}
|
391 |
|
392 |
-
for name,
|
393 |
print(f"\nποΈ Testing {name}...")
|
394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
try:
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
|
400 |
-
print(f"
|
|
|
|
|
|
|
401 |
|
402 |
-
if
|
403 |
-
print(f"
|
|
|
|
|
|
|
|
|
404 |
else:
|
405 |
-
print(f"
|
406 |
-
|
407 |
-
# Test forward pass
|
408 |
-
model.eval()
|
409 |
-
with torch.no_grad():
|
410 |
-
h = model(data.x, data.edge_index)
|
411 |
-
print(f" Forward pass: {data.x.shape} -> {h.shape} β
")
|
412 |
-
|
413 |
-
# Train
|
414 |
-
trainer = SmartTrainer(model, config, device)
|
415 |
-
history = trainer.train(data)
|
416 |
-
|
417 |
-
# Test
|
418 |
-
test_results = trainer.test(data)
|
419 |
-
|
420 |
-
results[name] = {
|
421 |
-
'params': total_params,
|
422 |
-
'params_per_sample': params_per_sample,
|
423 |
-
'test_results': test_results,
|
424 |
-
'history': history
|
425 |
-
}
|
426 |
-
|
427 |
-
print(f"β
{name} Results:")
|
428 |
-
print(f" π― Test Accuracy: {test_results['test_acc']:.4f} ({test_results['test_acc']*100:.2f}%)")
|
429 |
-
print(f" π Validation: {test_results['val_acc']:.4f}")
|
430 |
-
print(f" π‘οΈ Overfitting Gap: {test_results['gap']:.4f}")
|
431 |
-
|
432 |
-
if test_results['gap'] < 0.2:
|
433 |
-
print(f" π Overfitting under control!")
|
434 |
-
elif test_results['gap'] < 0.3:
|
435 |
-
print(f" π Much better overfitting control!")
|
436 |
-
else:
|
437 |
-
print(f" β οΈ Still some overfitting")
|
438 |
|
439 |
except Exception as e:
|
440 |
-
print(f"β
|
441 |
|
442 |
-
#
|
443 |
print(f"\n{'='*60}")
|
444 |
-
print("
|
445 |
print(f"{'='*60}")
|
446 |
|
|
|
|
|
|
|
447 |
for name, result in results.items():
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
-
print(f"\nπ‘ Key
|
455 |
-
print(f"
|
456 |
|
457 |
return results
|
458 |
|
459 |
if __name__ == "__main__":
|
460 |
-
results =
|
461 |
|
462 |
-
print(f"\nπ Process staying alive...")
|
463 |
try:
|
464 |
while True:
|
465 |
time.sleep(60)
|
466 |
except KeyboardInterrupt:
|
467 |
-
print("\nπ
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
π¨ EMERGENCY OVERFITTING FIX π¨
|
4 |
+
Tiny GraphMamba designed specifically for 140 training samples
|
5 |
"""
|
6 |
|
7 |
import torch
|
|
|
12 |
from torch_geometric.transforms import NormalizeFeatures
|
13 |
from torch_geometric.utils import to_undirected, add_self_loops
|
14 |
import torch.optim as optim
|
|
|
15 |
import time
|
|
|
16 |
|
17 |
def get_device():
|
18 |
if torch.cuda.is_available():
|
|
|
24 |
print("π» Using CPU")
|
25 |
return device
|
26 |
|
27 |
+
class EmergencyTinyMamba(nn.Module):
|
28 |
+
"""Emergency ultra-tiny model for 140 samples"""
|
29 |
+
def __init__(self, input_dim=1433, hidden_dim=8, num_classes=7):
|
30 |
super().__init__()
|
|
|
|
|
|
|
31 |
|
32 |
+
# TINY feature extraction
|
33 |
+
self.feature_reduce = nn.Sequential(
|
34 |
+
nn.Linear(input_dim, 32),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Dropout(0.9), # Extreme dropout
|
37 |
+
nn.Linear(32, hidden_dim)
|
38 |
+
)
|
39 |
|
40 |
+
# Single GCN layer
|
41 |
+
self.gcn = GCNConv(hidden_dim, hidden_dim)
|
|
|
|
|
42 |
|
43 |
+
# Tiny "Mamba-inspired" temporal processing
|
44 |
+
self.temporal = nn.Sequential(
|
45 |
+
nn.Linear(hidden_dim, hidden_dim),
|
46 |
+
nn.Tanh(), # Bounded activation
|
47 |
+
nn.Dropout(0.9)
|
48 |
+
)
|
49 |
|
50 |
+
# Direct classifier
|
51 |
+
self.classifier = nn.Sequential(
|
52 |
+
nn.Dropout(0.95), # Extreme dropout before classification
|
53 |
+
nn.Linear(hidden_dim, num_classes)
|
54 |
+
)
|
55 |
|
56 |
+
print(f"π¦Ύ Emergency Model - Parameters: {sum(p.numel() for p in self.parameters()):,}")
|
|
|
57 |
|
58 |
+
def forward(self, x, edge_index):
|
59 |
+
# Feature reduction
|
60 |
+
h = self.feature_reduce(x)
|
61 |
|
62 |
+
# Graph convolution
|
63 |
+
h_gcn = F.relu(self.gcn(h, edge_index))
|
64 |
|
65 |
+
# Temporal processing (Mamba-inspired)
|
66 |
+
h_temporal = self.temporal(h_gcn)
|
|
|
|
|
67 |
|
68 |
+
# Small residual connection
|
69 |
+
h = h + h_temporal * 0.1 # Very small update
|
70 |
|
71 |
+
# Classification
|
72 |
+
return self.classifier(h)
|
|
|
73 |
|
74 |
+
class MicroMamba(nn.Module):
|
75 |
+
"""Even smaller model"""
|
76 |
+
def __init__(self, input_dim=1433, hidden_dim=4, num_classes=7):
|
77 |
super().__init__()
|
78 |
+
|
79 |
+
# Ultra-compressed feature extraction
|
80 |
+
self.features = nn.Sequential(
|
81 |
+
nn.Linear(input_dim, 16),
|
|
|
|
|
|
|
|
|
82 |
nn.ReLU(),
|
83 |
+
nn.Dropout(0.95),
|
84 |
+
nn.Linear(16, hidden_dim)
|
|
|
85 |
)
|
86 |
|
87 |
+
# Minimal processing
|
88 |
+
self.process = nn.Sequential(
|
89 |
+
GCNConv(hidden_dim, hidden_dim),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
nn.ReLU(),
|
91 |
+
nn.Dropout(0.9)
|
|
|
92 |
)
|
93 |
|
94 |
+
# Direct classification
|
95 |
+
self.classify = nn.Sequential(
|
96 |
+
nn.Dropout(0.95),
|
97 |
+
nn.Linear(hidden_dim, num_classes)
|
98 |
+
)
|
99 |
|
100 |
+
print(f"π€ Micro Model - Parameters: {sum(p.numel() for p in self.parameters()):,}")
|
|
|
|
|
101 |
|
102 |
+
def forward(self, x, edge_index):
|
103 |
+
h = self.features(x)
|
104 |
+
h = self.process[0](h, edge_index) # GCN
|
105 |
+
h = self.process[1](h) # ReLU
|
106 |
+
h = self.process[2](h) # Dropout
|
107 |
+
return self.classify(h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
class NanoMamba(nn.Module):
|
110 |
+
"""Absolutely minimal model"""
|
111 |
+
def __init__(self, input_dim=1433, num_classes=7):
|
112 |
super().__init__()
|
|
|
|
|
|
|
113 |
|
114 |
+
# Direct path - no hidden layers
|
115 |
+
self.direct = nn.Sequential(
|
116 |
+
nn.Linear(input_dim, num_classes),
|
117 |
+
nn.Dropout(0.8)
|
|
|
|
|
|
|
118 |
)
|
119 |
|
120 |
+
# GCN path
|
121 |
+
self.gcn_path = nn.Sequential(
|
122 |
+
nn.Linear(input_dim, 8),
|
123 |
+
nn.Dropout(0.9)
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
+
self.gcn = GCNConv(8, num_classes)
|
126 |
|
127 |
+
print(f"βοΈ Nano Model - Parameters: {sum(p.numel() for p in self.parameters()):,}")
|
|
|
128 |
|
129 |
+
def forward(self, x, edge_index):
|
130 |
+
# Direct classification
|
131 |
+
direct_out = self.direct(x)
|
132 |
+
|
133 |
+
# GCN path
|
134 |
+
h = self.gcn_path(x)
|
135 |
+
gcn_out = self.gcn(h, edge_index)
|
136 |
+
|
137 |
+
# Minimal combination
|
138 |
+
return direct_out * 0.7 + gcn_out * 0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
def emergency_train(model, data, device, epochs=2000):
|
141 |
+
"""Emergency training with extreme regularization"""
|
142 |
+
model = model.to(device)
|
143 |
+
data = data.to(device)
|
144 |
+
|
145 |
+
# Very conservative optimizer
|
146 |
+
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=0.5)
|
147 |
+
|
148 |
+
# Label smoothing cross entropy
|
149 |
+
criterion = nn.CrossEntropyLoss(label_smoothing=0.5)
|
150 |
+
|
151 |
+
print(f"π¨ Emergency Training Protocol")
|
152 |
+
print(f" Parameters: {sum(p.numel() for p in model.parameters()):,}")
|
153 |
+
print(f" Per sample: {sum(p.numel() for p in model.parameters())/140:.1f}")
|
154 |
+
print(f" Epochs: {epochs}")
|
155 |
+
print(f" Learning rate: 0.001")
|
156 |
+
print(f" Weight decay: 0.5")
|
157 |
+
print(f" Label smoothing: 0.5")
|
158 |
+
|
159 |
+
best_val_acc = 0
|
160 |
+
patience = 0
|
161 |
+
|
162 |
+
for epoch in range(epochs):
|
163 |
+
# Training
|
164 |
+
model.train()
|
165 |
+
optimizer.zero_grad()
|
166 |
|
167 |
+
out = model(data.x, data.edge_index)
|
168 |
+
loss = criterion(out[data.train_mask], data.y[data.train_mask])
|
|
|
|
|
169 |
|
170 |
+
loss.backward()
|
171 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # Tiny gradients
|
172 |
+
optimizer.step()
|
173 |
+
|
174 |
+
# Evaluation
|
175 |
+
if (epoch + 1) % 100 == 0:
|
176 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
with torch.no_grad():
|
178 |
+
out = model(data.x, data.edge_index)
|
|
|
|
|
|
|
179 |
|
180 |
+
train_pred = out[data.train_mask].argmax(dim=1)
|
181 |
train_acc = (train_pred == data.y[data.train_mask]).float().mean().item()
|
182 |
|
183 |
+
val_pred = out[data.val_mask].argmax(dim=1)
|
184 |
val_acc = (val_pred == data.y[data.val_mask]).float().mean().item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
test_pred = out[data.test_mask].argmax(dim=1)
|
187 |
+
test_acc = (test_pred == data.y[data.test_mask]).float().mean().item()
|
188 |
+
|
|
|
|
|
|
|
189 |
gap = train_acc - val_acc
|
190 |
+
|
191 |
+
print(f" Epoch {epoch+1:4d}: Train {train_acc:.3f} | Val {val_acc:.3f} | "
|
192 |
+
f"Test {test_acc:.3f} | Gap {gap:.3f}")
|
193 |
+
|
194 |
+
if val_acc > best_val_acc:
|
195 |
+
best_val_acc = val_acc
|
196 |
+
patience = 0
|
197 |
+
else:
|
198 |
+
patience += 100
|
199 |
+
|
200 |
+
if patience >= 500: # Stop if no improvement
|
201 |
+
print(f" Early stopping at epoch {epoch+1}")
|
202 |
+
break
|
203 |
|
204 |
+
# Final evaluation
|
205 |
+
model.eval()
|
206 |
+
with torch.no_grad():
|
207 |
+
out = model(data.x, data.edge_index)
|
208 |
|
209 |
+
train_pred = out[data.train_mask].argmax(dim=1)
|
210 |
+
train_acc = (train_pred == data.y[data.train_mask]).float().mean().item()
|
211 |
+
|
212 |
+
val_pred = out[data.val_mask].argmax(dim=1)
|
213 |
+
val_acc = (val_pred == data.y[data.val_mask]).float().mean().item()
|
214 |
+
|
215 |
+
test_pred = out[data.test_mask].argmax(dim=1)
|
216 |
+
test_acc = (test_pred == data.y[data.test_mask]).float().mean().item()
|
217 |
+
|
218 |
+
gap = train_acc - val_acc
|
219 |
+
|
220 |
+
return {
|
221 |
+
'train_acc': train_acc,
|
222 |
+
'val_acc': val_acc,
|
223 |
+
'test_acc': test_acc,
|
224 |
+
'gap': gap
|
225 |
+
}
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
def run_emergency_fix():
|
228 |
+
"""Emergency overfitting fix"""
|
229 |
+
print("π¨π¨π¨ EMERGENCY OVERFITTING FIX π¨π¨π¨")
|
230 |
+
print("π©Ή Ultra-Tiny Models for 140 Training Samples")
|
231 |
print("=" * 60)
|
232 |
|
233 |
device = get_device()
|
|
|
239 |
data.edge_index = to_undirected(data.edge_index)
|
240 |
data.edge_index, _ = add_self_loops(data.edge_index, num_nodes=data.x.size(0))
|
241 |
|
242 |
+
print(f"β
Dataset: {data.num_nodes} nodes, Train: {data.train_mask.sum()} samples")
|
243 |
+
print(f"π― Target: <50 parameters per sample = <7,000 total parameters")
|
244 |
|
245 |
+
# Test emergency models
|
246 |
+
models = {
|
247 |
+
'Emergency Tiny (8D)': EmergencyTinyMamba(hidden_dim=8),
|
248 |
+
'Micro (4D)': MicroMamba(hidden_dim=4),
|
249 |
+
'Nano (Direct)': NanoMamba()
|
250 |
}
|
251 |
|
252 |
results = {}
|
253 |
|
254 |
+
for name, model in models.items():
|
255 |
print(f"\nποΈ Testing {name}...")
|
256 |
|
257 |
+
total_params = sum(p.numel() for p in model.parameters())
|
258 |
+
params_per_sample = total_params / 140
|
259 |
+
|
260 |
+
print(f" Parameters: {total_params:,} ({params_per_sample:.1f} per sample)")
|
261 |
+
|
262 |
+
if params_per_sample < 50:
|
263 |
+
print(f" β
EXCELLENT parameter ratio!")
|
264 |
+
elif params_per_sample < 100:
|
265 |
+
print(f" π Good parameter ratio!")
|
266 |
+
else:
|
267 |
+
print(f" β οΈ Still might overfit")
|
268 |
+
|
269 |
+
# Test forward pass
|
270 |
+
with torch.no_grad():
|
271 |
+
out = model(data.x, data.edge_index)
|
272 |
+
print(f" Forward: {data.x.shape} -> {out.shape} β
")
|
273 |
+
|
274 |
try:
|
275 |
+
# Emergency training
|
276 |
+
result = emergency_train(model, data, device)
|
277 |
+
results[name] = result
|
278 |
|
279 |
+
print(f" π― Final Results:")
|
280 |
+
print(f" Test Accuracy: {result['test_acc']:.3f} ({result['test_acc']*100:.1f}%)")
|
281 |
+
print(f" Train Accuracy: {result['train_acc']:.3f}")
|
282 |
+
print(f" Overfitting Gap: {result['gap']:.3f}")
|
283 |
|
284 |
+
if result['gap'] < 0.1:
|
285 |
+
print(f" π OVERFITTING SOLVED!")
|
286 |
+
elif result['gap'] < 0.2:
|
287 |
+
print(f" π Much better generalization!")
|
288 |
+
elif result['gap'] < 0.3:
|
289 |
+
print(f" π Improved generalization")
|
290 |
else:
|
291 |
+
print(f" β οΈ Still overfitting")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
except Exception as e:
|
294 |
+
print(f" β Training failed: {e}")
|
295 |
|
296 |
+
# Emergency summary
|
297 |
print(f"\n{'='*60}")
|
298 |
+
print("π¨ EMERGENCY RESULTS SUMMARY")
|
299 |
print(f"{'='*60}")
|
300 |
|
301 |
+
best_gap = float('inf')
|
302 |
+
best_model = None
|
303 |
+
|
304 |
for name, result in results.items():
|
305 |
+
print(f"π {name}:")
|
306 |
+
print(f" Test: {result['test_acc']:.3f} | Gap: {result['gap']:.3f}")
|
307 |
+
|
308 |
+
if result['gap'] < best_gap:
|
309 |
+
best_gap = result['gap']
|
310 |
+
best_model = name
|
311 |
+
|
312 |
+
if best_model:
|
313 |
+
print(f"\nπ Best Generalization: {best_model} (Gap: {best_gap:.3f})")
|
314 |
+
|
315 |
+
if best_gap < 0.1:
|
316 |
+
print(f"π MISSION ACCOMPLISHED! Overfitting crisis resolved!")
|
317 |
+
elif best_gap < 0.2:
|
318 |
+
print(f"π Significant improvement in generalization!")
|
319 |
+
else:
|
320 |
+
print(f"π Progress made, but still work to do...")
|
321 |
+
|
322 |
+
# Comparison with your current model
|
323 |
+
print(f"\nπ Comparison:")
|
324 |
+
print(f" Your model: 194K params, Gap ~0.5")
|
325 |
+
if best_model and best_gap < 0.3:
|
326 |
+
improvement = 0.5 - best_gap
|
327 |
+
print(f" Best tiny model: Gap {best_gap:.3f} (Improvement: {improvement:.3f})")
|
328 |
+
print(f" π― {improvement/0.5*100:.0f}% reduction in overfitting!")
|
329 |
|
330 |
+
print(f"\nπ‘ Key Lesson: With only 140 samples, bigger β better!")
|
331 |
+
print(f"π§ Tiny models can achieve competitive performance with much better generalization.")
|
332 |
|
333 |
return results
|
334 |
|
335 |
if __name__ == "__main__":
|
336 |
+
results = run_emergency_fix()
|
337 |
|
338 |
+
print(f"\nπ Emergency fix complete. Process staying alive...")
|
339 |
try:
|
340 |
while True:
|
341 |
time.sleep(60)
|
342 |
except KeyboardInterrupt:
|
343 |
+
print("\nπ Emergency protocol terminated.")
|