Spaces:
Sleeping
Sleeping
import os | |
# exec(os.getenv("CODE")) # to execute the whole code in huggingface. | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
import google.generativeai as genai | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
import base64 | |
from io import BytesIO | |
load_dotenv() | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
## going to each and very pdf and each page of that padf and extracting text from it. | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(BytesIO(pdf.read())) | |
for page in pdf_reader.pages: | |
text+=page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
## converting chunks into vectors | |
def get_vector_store(text_chunks): | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
vector_store = FAISS.from_texts(text_chunks, embedding =embeddings) | |
vector_store.save_local("faiss_index") | |
## developing bot | |
def get_conversational_chain(): | |
prompt_template= """ | |
Answer the question as detailed as possible from the provided context, make sure to provide | |
all the details if the answer is not in the provided context just say, "answer is not available in the context", | |
don't provide the wrong answer. | |
Context: \n{context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model = "gemini-pro", temperature= 0.45) | |
prompt= PromptTemplate(template=prompt_template, input_variables=['context', 'question']) | |
chain = load_qa_chain(model, chain_type="stuff", prompt= prompt) | |
return chain | |
## the user input interface | |
def user_input(user_question): | |
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001') | |
db = FAISS.load_local('faiss_index', embeddings, allow_dangerous_deserialization= True) | |
docs = db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response= chain({"input_documents":docs, "question":user_question}, return_only_outputs=True) | |
print(response) | |
st.write("Bot: ", response["output_text"]) | |
# streamlit app | |
def main(): | |
st.set_page_config(page_title="Chat With Multiple PDF") | |
# Function to set a background image | |
def set_background(image_file): | |
with open(image_file, "rb") as image: | |
b64_image = base64.b64encode(image.read()).decode("utf-8") | |
css = f""" | |
<style> | |
.stApp {{ | |
background: url(data:image/png;base64,{b64_image}); | |
background-size: cover; | |
background-position: centre; | |
backgroun-repeat: no-repeat; | |
}} | |
</style> | |
""" | |
st.markdown(css, unsafe_allow_html=True) | |
# Set the background image | |
set_background("background_image.png") | |
st.header("Podcast With Your PDF's") | |
user_question = st.text_input("Ask a Question from the PDF Files") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.title("Menu:") | |
pdf_docs = st.file_uploader("Upload Your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, type='pdf') | |
if st.button("Submit & Process") : | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Done") | |
if __name__ == "__main__": | |
main() |