import os # exec(os.getenv("CODE")) # to execute the whole code in huggingface. import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv import base64 from io import BytesIO load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) ## going to each and very pdf and each page of that padf and extracting text from it. def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(BytesIO(pdf.read())) for page in pdf_reader.pages: text+=page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 1000) chunks = text_splitter.split_text(text) return chunks ## converting chunks into vectors def get_vector_store(text_chunks): embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding =embeddings) vector_store.save_local("faiss_index") ## developing bot def get_conversational_chain(): prompt_template= """ Answer the question as detailed as possible from the provided context, make sure to provide all the details if the answer is not in the provided context just say, "answer is not available in the context", don't provide the wrong answer. Context: \n{context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model = "gemini-pro", temperature= 0.45) prompt= PromptTemplate(template=prompt_template, input_variables=['context', 'question']) chain = load_qa_chain(model, chain_type="stuff", prompt= prompt) return chain ## the user input interface def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001') db = FAISS.load_local('faiss_index', embeddings, allow_dangerous_deserialization= True) docs = db.similarity_search(user_question) chain = get_conversational_chain() response= chain({"input_documents":docs, "question":user_question}, return_only_outputs=True) print(response) st.write("Bot: ", response["output_text"]) # streamlit app def main(): st.set_page_config(page_title="Chat With Multiple PDF") # Function to set a background image def set_background(image_file): with open(image_file, "rb") as image: b64_image = base64.b64encode(image.read()).decode("utf-8") css = f""" """ st.markdown(css, unsafe_allow_html=True) # Set the background image set_background("background_image.png") st.header("Podcast With Your PDF's") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: user_input(user_question) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload Your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, type='pdf') if st.button("Submit & Process") : with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") if __name__ == "__main__": main()