File size: 5,381 Bytes
afd4069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from __future__ import annotations

from collections.abc import Iterable
import os
from typing import Any, Protocol

from huggingface_hub.inference._text_generation import TextGenerationStreamResponse, Token
import streamlit as st
import torch
from transformers import AutoModel, AutoTokenizer

from conversation import Conversation

TOOL_PROMPT = 'Answer the following questions as best as you can. You have access to the following tools:'

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')

@st.cache_resource
def get_client() -> Client:
    client = HFClient(MODEL_PATH)
    return client

class Client(Protocol):
    def generate_stream(self,
        system: str | None,
        tools: list[dict] | None,
        history: list[Conversation],
        **parameters: Any
    ) -> Iterable[TextGenerationStreamResponse]:
        ...

def stream_chat(self, tokenizer, query: str, history: list[tuple[str, str]] = None, role: str = "user",
                    past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
                    logits_processor=None, return_past_key_values=False, **kwargs):
        
    from transformers.generation.logits_process import LogitsProcessor
    from transformers.generation.utils import LogitsProcessorList

    class InvalidScoreLogitsProcessor(LogitsProcessor):
        def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
            if torch.isnan(scores).any() or torch.isinf(scores).any():
                scores.zero_()
                scores[..., 5] = 5e4
            return scores

    if history is None:
        history = []
    if logits_processor is None:
        logits_processor = LogitsProcessorList()
    logits_processor.append(InvalidScoreLogitsProcessor())
    eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
                    tokenizer.get_command("<|observation|>")]
    gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
                    "temperature": temperature, "logits_processor": logits_processor, **kwargs}
    if past_key_values is None:
        inputs = tokenizer.build_chat_input(query, history=history, role=role)
    else:
        inputs = tokenizer.build_chat_input(query, role=role)
    inputs = inputs.to(self.device)
    if past_key_values is not None:
        past_length = past_key_values[0][0].shape[0]
        if self.transformer.pre_seq_len is not None:
            past_length -= self.transformer.pre_seq_len
        inputs.position_ids += past_length
        attention_mask = inputs.attention_mask
        attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
        inputs['attention_mask'] = attention_mask
    history.append({"role": role, "content": query})
    for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
                                        eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
                                        **gen_kwargs):
        if return_past_key_values:
            outputs, past_key_values = outputs
        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
        response = tokenizer.decode(outputs)
        if response and response[-1] != "�":
            new_history = history
            if return_past_key_values:
                yield response, new_history, past_key_values
            else:
                yield response, new_history

class HFClient(Client):
    def __init__(self, model_path: str):
        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(
            'cuda' if torch.cuda.is_available() else
            'mps' if torch.backends.mps.is_available() else
            'cpu'
        )
        self.model = self.model.eval()

    def generate_stream(self,
        system: str | None,
        tools: list[dict] | None,
        history: list[Conversation],
        **parameters: Any
    ) -> Iterable[TextGenerationStreamResponse]:
        chat_history = [{
            'role': 'system',
            'content': system if not tools else TOOL_PROMPT,
        }]

        if tools:
            chat_history[0]['tools'] = tools

        for conversation in history[:-1]:
            chat_history.append({
                'role': str(conversation.role).removeprefix('<|').removesuffix('|>'),
                'content': conversation.content,
            })
        
        query = history[-1].content
        role = str(history[-1].role).removeprefix('<|').removesuffix('|>')

        text = ''
        
        for new_text, _ in stream_chat(self.model,
            self.tokenizer,
            query,
            chat_history,
            role,
            **parameters,
        ):
            word = new_text.removeprefix(text)
            word_stripped = word.strip()
            text = new_text
            yield TextGenerationStreamResponse(
                generated_text=text,
                token=Token(
                    id=0,
                    logprob=0,
                    text=word,
                    special=word_stripped.startswith('<|') and word_stripped.endswith('|>'),
                )
            )