Spaces:
No application file
No application file
Delete app.py
Browse files
app.py
DELETED
@@ -1,467 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import logging
|
4 |
-
from pathlib import Path
|
5 |
-
import json
|
6 |
-
import hashlib
|
7 |
-
from datetime import datetime
|
8 |
-
import threading
|
9 |
-
import queue
|
10 |
-
from typing import List, Dict, Any, Tuple, Optional
|
11 |
-
|
12 |
-
# Configure logging
|
13 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
# Importing necessary libraries
|
17 |
-
import torch
|
18 |
-
import numpy as np
|
19 |
-
from sentence_transformers import SentenceTransformer
|
20 |
-
import chromadb
|
21 |
-
from chromadb.utils import embedding_functions
|
22 |
-
import gradio as gr
|
23 |
-
from openai import OpenAI
|
24 |
-
import google.generativeai as genai
|
25 |
-
|
26 |
-
# Configuration class
|
27 |
-
class Config:
|
28 |
-
"""Configuration for vector store and RAG"""
|
29 |
-
def __init__(self,
|
30 |
-
local_dir: str = "./chroma_data",
|
31 |
-
batch_size: int = 20,
|
32 |
-
max_workers: int = 4,
|
33 |
-
embedding_model: str = "all-MiniLM-L6-v2",
|
34 |
-
collection_name: str = "markdown_docs"):
|
35 |
-
self.local_dir = local_dir
|
36 |
-
self.batch_size = batch_size
|
37 |
-
self.max_workers = max_workers
|
38 |
-
self.checkpoint_file = Path(local_dir) / "checkpoint.json"
|
39 |
-
self.embedding_model = embedding_model
|
40 |
-
self.collection_name = collection_name
|
41 |
-
|
42 |
-
# Create local directory for checkpoints and Chroma
|
43 |
-
Path(local_dir).mkdir(parents=True, exist_ok=True)
|
44 |
-
|
45 |
-
# Embedding engine
|
46 |
-
class EmbeddingEngine:
|
47 |
-
"""Handle embeddings with a lightweight model"""
|
48 |
-
|
49 |
-
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
50 |
-
# Use GPU if available
|
51 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
-
logger.info(f"Using device: {self.device}")
|
53 |
-
|
54 |
-
# Try multiple model options in order of preference
|
55 |
-
model_options = [
|
56 |
-
model_name,
|
57 |
-
"all-MiniLM-L6-v2",
|
58 |
-
"paraphrase-MiniLM-L3-v2",
|
59 |
-
"all-mpnet-base-v2" # Higher quality but larger model
|
60 |
-
]
|
61 |
-
|
62 |
-
self.model = None
|
63 |
-
|
64 |
-
# Try each model in order until one works
|
65 |
-
for model_option in model_options:
|
66 |
-
try:
|
67 |
-
logger.info(f"Attempting to load model: {model_option}")
|
68 |
-
self.model = SentenceTransformer(model_option)
|
69 |
-
|
70 |
-
# Move model to device
|
71 |
-
self.model.to(self.device)
|
72 |
-
|
73 |
-
logger.info(f"Successfully loaded model: {model_option}")
|
74 |
-
self.model_name = model_option
|
75 |
-
self.vector_size = self.model.get_sentence_embedding_dimension()
|
76 |
-
break
|
77 |
-
|
78 |
-
except Exception as e:
|
79 |
-
logger.warning(f"Failed to load model {model_option}: {str(e)}")
|
80 |
-
|
81 |
-
if self.model is None:
|
82 |
-
logger.error("Failed to load any embedding model. Exiting.")
|
83 |
-
sys.exit(1)
|
84 |
-
|
85 |
-
def encode(self, text, batch_size=32):
|
86 |
-
"""Get embedding for a text or list of texts"""
|
87 |
-
# Handle single text
|
88 |
-
if isinstance(text, str):
|
89 |
-
texts = [text]
|
90 |
-
else:
|
91 |
-
texts = text
|
92 |
-
|
93 |
-
# Truncate texts if necessary to avoid tokenization issues
|
94 |
-
truncated_texts = [t[:50000] if len(t) > 50000 else t for t in texts]
|
95 |
-
|
96 |
-
# Generate embeddings
|
97 |
-
try:
|
98 |
-
embeddings = self.model.encode(truncated_texts, batch_size=batch_size,
|
99 |
-
show_progress_bar=False, convert_to_numpy=True)
|
100 |
-
return embeddings
|
101 |
-
except Exception as e:
|
102 |
-
logger.error(f"Error generating embeddings: {e}")
|
103 |
-
# Return zero embeddings as fallback
|
104 |
-
return np.zeros((len(truncated_texts), self.vector_size))
|
105 |
-
|
106 |
-
class VectorStoreManager:
|
107 |
-
"""Manage Chroma vector store operations - upload, query, etc."""
|
108 |
-
|
109 |
-
def __init__(self, config: Config):
|
110 |
-
self.config = config
|
111 |
-
|
112 |
-
# Initialize Chroma client (local persistence)
|
113 |
-
logger.info(f"Initializing Chroma at {config.local_dir}")
|
114 |
-
self.client = chromadb.PersistentClient(path=config.local_dir)
|
115 |
-
|
116 |
-
# Get or create collection
|
117 |
-
try:
|
118 |
-
# Initialize embedding model
|
119 |
-
logger.info("Loading embedding model...")
|
120 |
-
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
121 |
-
logger.info(f"Using model: {self.embedding_engine.model_name}")
|
122 |
-
|
123 |
-
# Create embedding function
|
124 |
-
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
125 |
-
model_name=self.embedding_engine.model_name
|
126 |
-
)
|
127 |
-
|
128 |
-
# Try to get existing collection
|
129 |
-
try:
|
130 |
-
self.collection = self.client.get_collection(
|
131 |
-
name=config.collection_name,
|
132 |
-
embedding_function=sentence_transformer_ef
|
133 |
-
)
|
134 |
-
logger.info(f"Using existing collection: {config.collection_name}")
|
135 |
-
except:
|
136 |
-
# Create new collection if it doesn't exist
|
137 |
-
self.collection = self.client.create_collection(
|
138 |
-
name=config.collection_name,
|
139 |
-
embedding_function=sentence_transformer_ef,
|
140 |
-
metadata={"hnsw:space": "cosine"}
|
141 |
-
)
|
142 |
-
logger.info(f"Created new collection: {config.collection_name}")
|
143 |
-
|
144 |
-
except Exception as e:
|
145 |
-
logger.error(f"Error initializing Chroma collection: {e}")
|
146 |
-
sys.exit(1)
|
147 |
-
|
148 |
-
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
|
149 |
-
"""
|
150 |
-
Query the vector store with a text query
|
151 |
-
"""
|
152 |
-
try:
|
153 |
-
# Query the collection
|
154 |
-
search_results = self.collection.query(
|
155 |
-
query_texts=[query_text],
|
156 |
-
n_results=n_results,
|
157 |
-
include=["documents", "metadatas", "distances"]
|
158 |
-
)
|
159 |
-
|
160 |
-
# Format results
|
161 |
-
results = []
|
162 |
-
if search_results["documents"] and len(search_results["documents"][0]) > 0:
|
163 |
-
for i in range(len(search_results["documents"][0])):
|
164 |
-
results.append({
|
165 |
-
'document': search_results["documents"][0][i],
|
166 |
-
'metadata': search_results["metadatas"][0][i],
|
167 |
-
'score': 1.0 - search_results["distances"][0][i] # Convert distance to similarity
|
168 |
-
})
|
169 |
-
|
170 |
-
return results
|
171 |
-
except Exception as e:
|
172 |
-
logger.error(f"Error querying collection: {e}")
|
173 |
-
return []
|
174 |
-
|
175 |
-
def get_statistics(self) -> Dict[str, Any]:
|
176 |
-
"""Get statistics about the vector store"""
|
177 |
-
stats = {}
|
178 |
-
|
179 |
-
try:
|
180 |
-
# Get collection count
|
181 |
-
collection_info = self.collection.count()
|
182 |
-
stats['total_documents'] = collection_info
|
183 |
-
|
184 |
-
# Estimate unique files - with no chunking, each document is a file
|
185 |
-
stats['unique_files'] = collection_info
|
186 |
-
except Exception as e:
|
187 |
-
logger.error(f"Error getting statistics: {e}")
|
188 |
-
stats['error'] = str(e)
|
189 |
-
|
190 |
-
return stats
|
191 |
-
|
192 |
-
class RAGSystem:
|
193 |
-
"""Retrieval-Augmented Generation with multiple LLM providers"""
|
194 |
-
|
195 |
-
def __init__(self, vector_store: VectorStoreManager):
|
196 |
-
self.vector_store = vector_store
|
197 |
-
self.openai_client = None
|
198 |
-
self.gemini_configured = False
|
199 |
-
|
200 |
-
def setup_openai(self, api_key: str):
|
201 |
-
"""Set up OpenAI client with API key"""
|
202 |
-
try:
|
203 |
-
self.openai_client = OpenAI(api_key=api_key)
|
204 |
-
return True
|
205 |
-
except Exception as e:
|
206 |
-
logger.error(f"Error initializing OpenAI client: {e}")
|
207 |
-
return False
|
208 |
-
|
209 |
-
def setup_gemini(self, api_key: str):
|
210 |
-
"""Set up Gemini with API key"""
|
211 |
-
try:
|
212 |
-
genai.configure(api_key=api_key)
|
213 |
-
self.gemini_configured = True
|
214 |
-
return True
|
215 |
-
except Exception as e:
|
216 |
-
logger.error(f"Error configuring Gemini: {e}")
|
217 |
-
return False
|
218 |
-
|
219 |
-
def format_context(self, documents: List[Dict]) -> str:
|
220 |
-
"""Format retrieved documents into context for the LLM"""
|
221 |
-
if not documents:
|
222 |
-
return "No relevant documents found."
|
223 |
-
|
224 |
-
context_parts = []
|
225 |
-
for i, doc in enumerate(documents):
|
226 |
-
metadata = doc['metadata']
|
227 |
-
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
228 |
-
|
229 |
-
# For readability, limit length of context document
|
230 |
-
doc_text = doc['document']
|
231 |
-
if len(doc_text) > 10000: # Limit long documents in context
|
232 |
-
doc_text = doc_text[:10000] + "... [Document truncated for context]"
|
233 |
-
|
234 |
-
context_parts.append(f"Document {i+1} - {title}:\n{doc_text}\n")
|
235 |
-
|
236 |
-
return "\n".join(context_parts)
|
237 |
-
|
238 |
-
def generate_response_openai(self, query: str, context: str) -> str:
|
239 |
-
"""Generate a response using OpenAI model with context"""
|
240 |
-
if not self.openai_client:
|
241 |
-
return "Error: OpenAI API key not configured. Please enter an API key in the settings tab."
|
242 |
-
|
243 |
-
system_prompt = """
|
244 |
-
You are a helpful assistant that answers questions based on the context provided.
|
245 |
-
Use the information from the context to answer the user's question.
|
246 |
-
If the context doesn't contain the information needed, say so clearly.
|
247 |
-
Always cite the specific sections from the context that you used in your answer.
|
248 |
-
"""
|
249 |
-
|
250 |
-
try:
|
251 |
-
response = self.openai_client.chat.completions.create(
|
252 |
-
model="gpt-4o-mini", # Use GPT-4o mini
|
253 |
-
messages=[
|
254 |
-
{"role": "system", "content": system_prompt},
|
255 |
-
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
256 |
-
],
|
257 |
-
temperature=0.3, # Lower temperature for more factual responses
|
258 |
-
max_tokens=1000,
|
259 |
-
)
|
260 |
-
return response.choices[0].message.content
|
261 |
-
except Exception as e:
|
262 |
-
logger.error(f"Error generating response with OpenAI: {e}")
|
263 |
-
return f"Error generating response with OpenAI: {str(e)}"
|
264 |
-
|
265 |
-
def generate_response_gemini(self, query: str, context: str) -> str:
|
266 |
-
"""Generate a response using Gemini with context"""
|
267 |
-
if not self.gemini_configured:
|
268 |
-
return "Error: Google AI API key not configured. Please enter an API key in the settings tab."
|
269 |
-
|
270 |
-
prompt = f"""
|
271 |
-
You are a helpful assistant that answers questions based on the context provided.
|
272 |
-
Use the information from the context to answer the user's question.
|
273 |
-
If the context doesn't contain the information needed, say so clearly.
|
274 |
-
Always cite the specific sections from the context that you used in your answer.
|
275 |
-
|
276 |
-
Context:
|
277 |
-
{context}
|
278 |
-
|
279 |
-
Question: {query}
|
280 |
-
"""
|
281 |
-
|
282 |
-
try:
|
283 |
-
model = genai.GenerativeModel('gemini-1.5-flash')
|
284 |
-
response = model.generate_content(prompt)
|
285 |
-
return response.text
|
286 |
-
except Exception as e:
|
287 |
-
logger.error(f"Error generating response with Gemini: {e}")
|
288 |
-
return f"Error generating response with Gemini: {str(e)}"
|
289 |
-
|
290 |
-
def query_and_generate(self, query: str, n_results: int = 5, model: str = "openai") -> str:
|
291 |
-
"""Retrieve relevant documents and generate a response using the specified model"""
|
292 |
-
# Query vector store
|
293 |
-
documents = self.vector_store.query(query, n_results=n_results)
|
294 |
-
|
295 |
-
if not documents:
|
296 |
-
return "No relevant documents found to answer your question."
|
297 |
-
|
298 |
-
# Format context
|
299 |
-
context = self.format_context(documents)
|
300 |
-
|
301 |
-
# Generate response with the appropriate model
|
302 |
-
if model == "openai":
|
303 |
-
return self.generate_response_openai(query, context)
|
304 |
-
elif model == "gemini":
|
305 |
-
return self.generate_response_gemini(query, context)
|
306 |
-
else:
|
307 |
-
return f"Unknown model: {model}"
|
308 |
-
|
309 |
-
def rag_chat(query, n_results, model_choice, rag_system):
|
310 |
-
"""Function to handle RAG chat queries"""
|
311 |
-
return rag_system.query_and_generate(query, n_results=int(n_results), model=model_choice)
|
312 |
-
|
313 |
-
def simple_query(query, n_results, vector_store):
|
314 |
-
"""Function to handle simple vector store queries"""
|
315 |
-
results = vector_store.query(query, n_results=int(n_results))
|
316 |
-
|
317 |
-
# Format results for display
|
318 |
-
formatted = []
|
319 |
-
for i, res in enumerate(results):
|
320 |
-
metadata = res['metadata']
|
321 |
-
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
322 |
-
# Limit preview text for display
|
323 |
-
preview = res['document'][:800] + '...' if len(res['document']) > 800 else res['document']
|
324 |
-
formatted.append(f"**Result {i+1}** (Similarity: {res['score']:.2f})\n\n"
|
325 |
-
f"**Source:** {title}\n\n"
|
326 |
-
f"**Content:**\n{preview}\n\n"
|
327 |
-
f"---\n")
|
328 |
-
|
329 |
-
return "\n".join(formatted) if formatted else "No results found."
|
330 |
-
|
331 |
-
def get_db_stats(vector_store):
|
332 |
-
"""Function to get vector store statistics"""
|
333 |
-
stats = vector_store.get_statistics()
|
334 |
-
return (f"Total documents: {stats.get('total_documents', 0)}\n"
|
335 |
-
f"Unique files: {stats.get('unique_files', 0)}")
|
336 |
-
|
337 |
-
def update_api_keys(openai_key, gemini_key, rag_system):
|
338 |
-
"""Update API keys for the RAG system"""
|
339 |
-
success_msg = []
|
340 |
-
|
341 |
-
if openai_key:
|
342 |
-
if rag_system.setup_openai(openai_key):
|
343 |
-
success_msg.append("✅ OpenAI API key configured successfully")
|
344 |
-
else:
|
345 |
-
success_msg.append("❌ Failed to configure OpenAI API key")
|
346 |
-
|
347 |
-
if gemini_key:
|
348 |
-
if rag_system.setup_gemini(gemini_key):
|
349 |
-
success_msg.append("✅ Google AI API key configured successfully")
|
350 |
-
else:
|
351 |
-
success_msg.append("❌ Failed to configure Google AI API key")
|
352 |
-
|
353 |
-
if not success_msg:
|
354 |
-
return "Please enter at least one API key"
|
355 |
-
|
356 |
-
return "\n".join(success_msg)
|
357 |
-
|
358 |
-
# Main function to run the application
|
359 |
-
def main():
|
360 |
-
# Set up paths for existing Chroma database
|
361 |
-
chroma_dir = Path("./chroma_data")
|
362 |
-
|
363 |
-
# Initialize the system
|
364 |
-
config = Config(
|
365 |
-
local_dir=str(chroma_dir),
|
366 |
-
collection_name="markdown_docs"
|
367 |
-
)
|
368 |
-
|
369 |
-
# Initialize vector store manager with existing collection
|
370 |
-
vector_store = VectorStoreManager(config)
|
371 |
-
|
372 |
-
# Initialize RAG system without API keys initially
|
373 |
-
rag_system = RAGSystem(vector_store)
|
374 |
-
|
375 |
-
# Define Gradio app
|
376 |
-
def rag_chat_wrapper(query, n_results, model_choice):
|
377 |
-
return rag_chat(query, n_results, model_choice, rag_system)
|
378 |
-
|
379 |
-
def simple_query_wrapper(query, n_results):
|
380 |
-
return simple_query(query, n_results, vector_store)
|
381 |
-
|
382 |
-
def update_api_keys_wrapper(openai_key, gemini_key):
|
383 |
-
return update_api_keys(openai_key, gemini_key, rag_system)
|
384 |
-
|
385 |
-
# Create the Gradio interface
|
386 |
-
with gr.Blocks(title="Markdown RAG System") as app:
|
387 |
-
gr.Markdown("# RAG System with Multiple LLM Providers")
|
388 |
-
|
389 |
-
with gr.Tab("Chat with Documents"):
|
390 |
-
with gr.Row():
|
391 |
-
with gr.Column(scale=3):
|
392 |
-
query_input = gr.Textbox(label="Question", placeholder="Ask a question about your documents...")
|
393 |
-
num_results = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of documents to retrieve")
|
394 |
-
model_choice = gr.Radio(
|
395 |
-
choices=["openai", "gemini"],
|
396 |
-
value="openai",
|
397 |
-
label="Choose LLM Provider",
|
398 |
-
info="Select which model to use for generating answers"
|
399 |
-
)
|
400 |
-
query_button = gr.Button("Ask", variant="primary")
|
401 |
-
|
402 |
-
with gr.Column(scale=7):
|
403 |
-
response_output = gr.Markdown(label="Response")
|
404 |
-
|
405 |
-
# Database stats
|
406 |
-
stats_display = gr.Textbox(label="Database Statistics", value=get_db_stats(vector_store))
|
407 |
-
refresh_button = gr.Button("Refresh Statistics")
|
408 |
-
|
409 |
-
with gr.Tab("Document Search"):
|
410 |
-
search_input = gr.Textbox(label="Search Query", placeholder="Search your documents...")
|
411 |
-
search_num = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of results")
|
412 |
-
search_button = gr.Button("Search", variant="primary")
|
413 |
-
search_output = gr.Markdown(label="Search Results")
|
414 |
-
|
415 |
-
with gr.Tab("Settings"):
|
416 |
-
gr.Markdown("""
|
417 |
-
## API Keys Configuration
|
418 |
-
|
419 |
-
This application can use either OpenAI's GPT-4o-mini or Google's Gemini 1.5 Flash for generating responses.
|
420 |
-
You need to provide at least one API key to use the chat functionality.
|
421 |
-
""")
|
422 |
-
|
423 |
-
openai_key_input = gr.Textbox(
|
424 |
-
label="OpenAI API Key",
|
425 |
-
placeholder="Enter your OpenAI API key here...",
|
426 |
-
type="password"
|
427 |
-
)
|
428 |
-
|
429 |
-
gemini_key_input = gr.Textbox(
|
430 |
-
label="Google AI API Key",
|
431 |
-
placeholder="Enter your Google AI API key here...",
|
432 |
-
type="password"
|
433 |
-
)
|
434 |
-
|
435 |
-
save_keys_button = gr.Button("Save API Keys", variant="primary")
|
436 |
-
api_status = gr.Markdown("")
|
437 |
-
|
438 |
-
# Set up events
|
439 |
-
query_button.click(
|
440 |
-
fn=rag_chat_wrapper,
|
441 |
-
inputs=[query_input, num_results, model_choice],
|
442 |
-
outputs=response_output
|
443 |
-
)
|
444 |
-
|
445 |
-
refresh_button.click(
|
446 |
-
fn=lambda: get_db_stats(vector_store),
|
447 |
-
inputs=None,
|
448 |
-
outputs=stats_display
|
449 |
-
)
|
450 |
-
|
451 |
-
search_button.click(
|
452 |
-
fn=simple_query_wrapper,
|
453 |
-
inputs=[search_input, search_num],
|
454 |
-
outputs=search_output
|
455 |
-
)
|
456 |
-
|
457 |
-
save_keys_button.click(
|
458 |
-
fn=update_api_keys_wrapper,
|
459 |
-
inputs=[openai_key_input, gemini_key_input],
|
460 |
-
outputs=api_status
|
461 |
-
)
|
462 |
-
|
463 |
-
# Launch the interface
|
464 |
-
app.launch()
|
465 |
-
|
466 |
-
if __name__ == "__main__":
|
467 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|