Spaces:
No application file
No application file
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,384 +1,467 @@
|
|
| 1 |
-
import base64
|
| 2 |
-
import io
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
import numpy as np
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
from typing import Dict, List, Tuple, Any
|
| 8 |
-
import json
|
| 9 |
-
from litellm import completion
|
| 10 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Configure logging
|
| 13 |
-
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
- Express enthusiasm about their achievements
|
| 26 |
-
- Dig deeper into interesting points they make
|
| 27 |
-
INFORMATION TO GATHER (through natural conversation):
|
| 28 |
-
1. Current Role Details:
|
| 29 |
-
- Job title and responsibilities
|
| 30 |
-
- Company size and industry
|
| 31 |
-
- Team size and structure
|
| 32 |
-
- Project scope and impact
|
| 33 |
-
- Current compensation (base, bonus, equity)
|
| 34 |
-
2. Experience Deep-Dive:
|
| 35 |
-
- Career progression story
|
| 36 |
-
- Leadership experience
|
| 37 |
-
- Major projects and achievements
|
| 38 |
-
- Technical skills and expertise
|
| 39 |
-
- Industry knowledge
|
| 40 |
-
3. Educational Background:
|
| 41 |
-
- Degrees and certifications
|
| 42 |
-
- Specialized training
|
| 43 |
-
- Continuous learning
|
| 44 |
-
4. Work Environment:
|
| 45 |
-
- Location and market
|
| 46 |
-
- Remote/hybrid setup
|
| 47 |
-
- Growth opportunities
|
| 48 |
-
- Company culture
|
| 49 |
-
CONVERSATION FLOW:
|
| 50 |
-
1. Start with: "Hi! I'd love to hear about your career journey. What kind of work are you doing currently?"
|
| 51 |
-
2. After each response:
|
| 52 |
-
- Pick up on specific details they mentioned
|
| 53 |
-
- Ask engaging follow-up questions
|
| 54 |
-
- Show genuine interest in their experiences
|
| 55 |
-
- Build on previous information shared
|
| 56 |
-
3. If they mention something interesting, probe deeper:
|
| 57 |
-
- "That project sounds fascinating! What were some unique challenges you faced?"
|
| 58 |
-
- "Leading a team must be exciting! How did you approach building and motivating your team?"
|
| 59 |
-
- "Interesting technology stack! What made you choose those specific tools?"
|
| 60 |
-
4. When compensation is mentioned:
|
| 61 |
-
- Be tactful and professional
|
| 62 |
-
- Acknowledge their goals
|
| 63 |
-
- Ask about their desired growth
|
| 64 |
-
5. Once you have enough information, say:
|
| 65 |
-
"I've got a good understanding of your career profile now! Would you like to see your personalized salary growth projection? Just click 'Generate Analysis' and I'll create a detailed forecast based on our discussion."
|
| 66 |
-
IMPORTANT:
|
| 67 |
-
- Keep conversation flowing naturally
|
| 68 |
-
- Don't rush to collect information
|
| 69 |
-
- Show genuine interest in their story
|
| 70 |
-
- Ask insightful follow-up questions
|
| 71 |
-
- Build rapport through discussion
|
| 72 |
-
"""
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
- 0.9: 10-15 years, senior leadership
|
| 93 |
-
- 0.8: 7-10 years, team leadership
|
| 94 |
-
- 0.7: 4-6 years, senior individual
|
| 95 |
-
- 0.6: 2-3 years, mid-level
|
| 96 |
-
- 0.5: 0-1 years, entry-level
|
| 97 |
-
Quality Indicators:
|
| 98 |
-
+0.1: Rapid promotions
|
| 99 |
-
+0.1: Significant achievements
|
| 100 |
-
+0.1: High-impact projects
|
| 101 |
-
3. Education Score (0-1):
|
| 102 |
-
Formal Education:
|
| 103 |
-
- 1.0: PhD from top institution
|
| 104 |
-
- 0.9: Masters from top institution
|
| 105 |
-
- 0.8: Bachelors from top institution
|
| 106 |
-
- 0.7: Advanced degree
|
| 107 |
-
- 0.6: Bachelors degree
|
| 108 |
-
- 0.5: Other education
|
| 109 |
-
Additional Factors:
|
| 110 |
-
+0.1: Relevant certifications
|
| 111 |
-
+0.1: Continuous learning
|
| 112 |
-
+0.1: Field-specific expertise
|
| 113 |
-
4. Skills Score (0-1):
|
| 114 |
-
Technical Depth:
|
| 115 |
-
- 1.0: Industry-leading expertise
|
| 116 |
-
- 0.9: Advanced technical leadership
|
| 117 |
-
- 0.8: Strong technical + leadership
|
| 118 |
-
- 0.7: Solid technical skills
|
| 119 |
-
- 0.6: Growing technical skills
|
| 120 |
-
- 0.5: Basic skill set
|
| 121 |
-
Breadth and Application:
|
| 122 |
-
+0.1: Multiple in-demand skills
|
| 123 |
-
+0.1: Proven implementation
|
| 124 |
-
+0.1: Cross-functional expertise
|
| 125 |
-
5. Location Score (0-1):
|
| 126 |
-
Market Strength:
|
| 127 |
-
- 1.0: Major tech hubs (SF, NYC)
|
| 128 |
-
- 0.9: Growing tech hubs
|
| 129 |
-
- 0.8: Major cities
|
| 130 |
-
- 0.7: Regional tech centers
|
| 131 |
-
- 0.6: Smaller markets
|
| 132 |
-
- 0.5: Remote locations
|
| 133 |
-
Flexibility:
|
| 134 |
-
+0.1: Remote work option
|
| 135 |
-
+0.1: High-growth market
|
| 136 |
-
+0.1: Strategic location
|
| 137 |
-
Return a JSON object with exactly these fields:
|
| 138 |
-
{
|
| 139 |
-
"industry_score": float,
|
| 140 |
-
"experience_score": float,
|
| 141 |
-
"education_score": float,
|
| 142 |
-
"skills_score": float,
|
| 143 |
-
"location_score": float,
|
| 144 |
-
"current_salary": float
|
| 145 |
-
}
|
| 146 |
-
Base scores on available information. Make reasonable assumptions for missing data based on context clues.
|
| 147 |
-
"""
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
def __init__(self):
|
| 153 |
-
self.globals = {'np': np, 'plt': plt}
|
| 154 |
-
self.locals = {}
|
| 155 |
|
| 156 |
-
def
|
| 157 |
-
|
| 158 |
-
if
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
try:
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
buf.seek(0)
|
| 167 |
-
result['figures'].append(buf.getvalue())
|
| 168 |
-
plt.close('all')
|
| 169 |
except Exception as e:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
|
| 174 |
-
class
|
| 175 |
-
"""
|
| 176 |
|
| 177 |
-
def __init__(self,
|
| 178 |
-
self.
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
paths = np.zeros((self.num_paths, self.years + 1))
|
| 184 |
-
paths[:, 0] = profile['current_salary']
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
|
| 197 |
-
salary = paths[path, 0]
|
| 198 |
-
for year in range(1, self.years + 1):
|
| 199 |
-
growth = base_growth + skill_premium + exp_premium + edu_premium + location_premium
|
| 200 |
-
growth += np.random.normal(0, volatility)
|
| 201 |
-
if np.random.random() < disruption_chance:
|
| 202 |
-
impact = disruption_impact * np.random.random()
|
| 203 |
-
growth += impact if np.random.random() < 0.7 else -impact
|
| 204 |
-
growth = max(min(growth, 0.25), -0.1)
|
| 205 |
-
salary *= (1 + growth)
|
| 206 |
-
paths[path, year] = salary
|
| 207 |
-
return paths
|
| 208 |
|
| 209 |
-
class
|
| 210 |
-
"""
|
| 211 |
-
|
| 212 |
-
def __init__(self, years: int = 5, num_paths: int = 1000):
|
| 213 |
-
self.chat_history = []
|
| 214 |
-
self.simulator = SalarySimulator(years, num_paths)
|
| 215 |
-
self.code_env = CodeEnvironment()
|
| 216 |
|
| 217 |
-
def
|
| 218 |
-
|
| 219 |
-
self.
|
|
|
|
| 220 |
|
| 221 |
-
def
|
| 222 |
-
"""
|
| 223 |
-
if not api_key.strip().startswith("sk-"):
|
| 224 |
-
return "Please enter a valid OpenAI API key starting with 'sk-'."
|
| 225 |
try:
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
response = completion(model="gpt-4o-mini", messages=messages, api_key=api_key)
|
| 229 |
-
self.chat_history.extend([
|
| 230 |
-
{"role": "user", "content": message},
|
| 231 |
-
{"role": "assistant", "content": response.choices[0].message.content}
|
| 232 |
-
])
|
| 233 |
-
return response.choices[0].message.content
|
| 234 |
except Exception as e:
|
| 235 |
-
|
|
|
|
| 236 |
|
| 237 |
-
def
|
| 238 |
-
"""
|
| 239 |
-
if not self.chat_history:
|
| 240 |
-
return "Please chat about your career first to generate an analysis.", None
|
| 241 |
try:
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
viz_code = """
|
| 246 |
-
import matplotlib.pyplot as plt
|
| 247 |
-
import numpy as np
|
| 248 |
-
plt.style.use('dark_background')
|
| 249 |
-
fig = plt.figure(figsize=(12, 16))
|
| 250 |
-
ax1 = plt.subplot2grid((2, 1), (0, 0))
|
| 251 |
-
for path in paths[::20]:
|
| 252 |
-
ax1.plot(range(paths.shape[1]), path, color='#4a90e2', alpha=0.1, linewidth=1)
|
| 253 |
-
percentiles = [10, 25, 50, 75, 90]
|
| 254 |
-
colors = ['#ff9999', '#ffcc99', '#ffffff', '#ffcc99', '#ff9999']
|
| 255 |
-
labels = ['10th', '25th', 'Median', '75th', '90th']
|
| 256 |
-
for p, color, label in zip(percentiles, colors, labels):
|
| 257 |
-
line = np.percentile(paths, p, axis=0)
|
| 258 |
-
ax1.plot(range(paths.shape[1]), line, color=color, linewidth=2, label=f'{label} percentile')
|
| 259 |
-
ax1.set_title('Salary Growth Projections\n', fontsize=16, pad=20)
|
| 260 |
-
ax1.set_xlabel('Years', fontsize=12)
|
| 261 |
-
ax1.set_ylabel('Salary ($)', fontsize=12)
|
| 262 |
-
ax1.grid(True, alpha=0.2)
|
| 263 |
-
ax1.legend(fontsize=10)
|
| 264 |
-
ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f'${x:,.0f}'))
|
| 265 |
-
ax1.set_xticks(range(paths.shape[1]))
|
| 266 |
-
ax1.set_xticklabels(['Current'] + [f'Year {i+1}' for i in range(paths.shape[1]-1)])
|
| 267 |
-
ax2 = plt.subplot2grid((2, 1), (1, 0))
|
| 268 |
-
final_salaries = paths[:, -1]
|
| 269 |
-
ax2.hist(final_salaries, bins=50, color='#4a90e2', alpha=0.7)
|
| 270 |
-
ax2.set_title('Final Salary Distribution\n', fontsize=16, pad=20)
|
| 271 |
-
ax2.set_xlabel('Salary ($)', fontsize=12)
|
| 272 |
-
ax2.set_ylabel('Frequency', fontsize=12)
|
| 273 |
-
ax2.grid(True, alpha=0.2)
|
| 274 |
-
ax2.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f'${x:,.0f}'))
|
| 275 |
-
for p, color in zip(percentiles, colors):
|
| 276 |
-
value = np.percentile(final_salaries, p)
|
| 277 |
-
ax2.axvline(x=value, color=color, linestyle='--', alpha=0.5)
|
| 278 |
-
plt.tight_layout(pad=4)
|
| 279 |
-
"""
|
| 280 |
-
viz_result = self.code_env.execute(viz_code, paths)
|
| 281 |
-
if viz_result['error']:
|
| 282 |
-
return f"Analysis generated, but {viz_result['error']}", None
|
| 283 |
-
summary = self._generate_summary(profile, paths)
|
| 284 |
-
return summary, viz_result['figures'][0]
|
| 285 |
except Exception as e:
|
| 286 |
-
|
|
|
|
| 287 |
|
| 288 |
-
def
|
| 289 |
-
"""
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
def
|
| 304 |
-
"""Generate
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
Career Profile Analysis
|
| 311 |
-
======================
|
| 312 |
-
Current Situation:
|
| 313 |
-
β’ Salary: ${profile['current_salary']:,.2f}
|
| 314 |
-
β’ Industry Position: {profile['industry_score']:.2f}/1.0
|
| 315 |
-
β’ Experience Level: {profile['experience_score']:.2f}/1.0
|
| 316 |
-
β’ Education Rating: {profile['education_score']:.2f}/1.0
|
| 317 |
-
β’ Skills Assessment: {profile['skills_score']:.2f}/1.0
|
| 318 |
-
β’ Location Impact: {profile['location_score']:.2f}/1.0
|
| 319 |
-
{self.simulator.years}-Year Projection:
|
| 320 |
-
β’ Conservative (25th percentile): ${np.percentile(final_salaries, 25):,.2f}
|
| 321 |
-
β’ Most Likely (Median): ${np.percentile(final_salaries, 50):,.2f}
|
| 322 |
-
β’ Optimistic (75th percentile): ${np.percentile(final_salaries, 75):,.2f}
|
| 323 |
-
β’ Expected Annual Growth: {cagr*100:.1f}%
|
| 324 |
-
Key Insights:
|
| 325 |
-
β’ Your profile suggests {cagr*100:.1f}% annual growth potential
|
| 326 |
-
β’ {profile['industry_score']:.2f} industry score indicates {'strong' if profile['industry_score'] > 0.7 else 'moderate' if profile['industry_score'] > 0.5 else 'challenging'} growth environment
|
| 327 |
-
β’ Skills rating of {profile['skills_score']:.2f} suggests {'excellent' if profile['skills_score'] > 0.7 else 'good' if profile['skills_score'] > 0.5 else 'potential for'} career advancement
|
| 328 |
-
β’ Location score {profile['location_score']:.2f} {'enhances' if profile['location_score'] > 0.7 else 'supports' if profile['location_score'] > 0.5 else 'may limit'} opportunities
|
| 329 |
-
Based on {self.simulator.num_paths:,} simulated career paths
|
| 330 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
advisor.reset()
|
| 340 |
|
| 341 |
-
def
|
| 342 |
-
|
| 343 |
-
return "", history
|
| 344 |
-
if not advisor:
|
| 345 |
-
return "Please set simulation parameters first.", history
|
| 346 |
-
response = advisor.chat(message, api_key)
|
| 347 |
-
return "", history + [(message, response)]
|
| 348 |
|
| 349 |
-
def
|
| 350 |
-
|
| 351 |
-
return "Please chat about your career and set parameters first.", None
|
| 352 |
-
summary, figure_data = advisor.generate_analysis(api_key)
|
| 353 |
-
return summary, figure_data if figure_data else None
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
|
|
|
| 357 |
|
| 358 |
-
with gr.
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
|
|
|
|
|
|
| 374 |
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
|
|
|
| 379 |
|
| 380 |
-
|
|
|
|
| 381 |
|
| 382 |
if __name__ == "__main__":
|
| 383 |
-
|
| 384 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import json
|
| 6 |
+
import hashlib
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import threading
|
| 9 |
+
import queue
|
| 10 |
+
from typing import List, Dict, Any, Tuple, Optional
|
| 11 |
|
| 12 |
# Configure logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
# Importing necessary libraries
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
+
from sentence_transformers import SentenceTransformer
|
| 20 |
+
import chromadb
|
| 21 |
+
from chromadb.utils import embedding_functions
|
| 22 |
+
import gradio as gr
|
| 23 |
+
from openai import OpenAI
|
| 24 |
+
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Configuration class
|
| 27 |
+
class Config:
|
| 28 |
+
"""Configuration for vector store and RAG"""
|
| 29 |
+
def __init__(self,
|
| 30 |
+
local_dir: str = "./chroma_data",
|
| 31 |
+
batch_size: int = 20,
|
| 32 |
+
max_workers: int = 4,
|
| 33 |
+
embedding_model: str = "all-MiniLM-L6-v2",
|
| 34 |
+
collection_name: str = "markdown_docs"):
|
| 35 |
+
self.local_dir = local_dir
|
| 36 |
+
self.batch_size = batch_size
|
| 37 |
+
self.max_workers = max_workers
|
| 38 |
+
self.checkpoint_file = Path(local_dir) / "checkpoint.json"
|
| 39 |
+
self.embedding_model = embedding_model
|
| 40 |
+
self.collection_name = collection_name
|
| 41 |
+
|
| 42 |
+
# Create local directory for checkpoints and Chroma
|
| 43 |
+
Path(local_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Embedding engine
|
| 46 |
+
class EmbeddingEngine:
|
| 47 |
+
"""Handle embeddings with a lightweight model"""
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
| 50 |
+
# Use GPU if available
|
| 51 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
+
logger.info(f"Using device: {self.device}")
|
| 53 |
+
|
| 54 |
+
# Try multiple model options in order of preference
|
| 55 |
+
model_options = [
|
| 56 |
+
model_name,
|
| 57 |
+
"all-MiniLM-L6-v2",
|
| 58 |
+
"paraphrase-MiniLM-L3-v2",
|
| 59 |
+
"all-mpnet-base-v2" # Higher quality but larger model
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
self.model = None
|
| 63 |
+
|
| 64 |
+
# Try each model in order until one works
|
| 65 |
+
for model_option in model_options:
|
| 66 |
+
try:
|
| 67 |
+
logger.info(f"Attempting to load model: {model_option}")
|
| 68 |
+
self.model = SentenceTransformer(model_option)
|
| 69 |
+
|
| 70 |
+
# Move model to device
|
| 71 |
+
self.model.to(self.device)
|
| 72 |
+
|
| 73 |
+
logger.info(f"Successfully loaded model: {model_option}")
|
| 74 |
+
self.model_name = model_option
|
| 75 |
+
self.vector_size = self.model.get_sentence_embedding_dimension()
|
| 76 |
+
break
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
logger.warning(f"Failed to load model {model_option}: {str(e)}")
|
| 80 |
+
|
| 81 |
+
if self.model is None:
|
| 82 |
+
logger.error("Failed to load any embedding model. Exiting.")
|
| 83 |
+
sys.exit(1)
|
| 84 |
+
|
| 85 |
+
def encode(self, text, batch_size=32):
|
| 86 |
+
"""Get embedding for a text or list of texts"""
|
| 87 |
+
# Handle single text
|
| 88 |
+
if isinstance(text, str):
|
| 89 |
+
texts = [text]
|
| 90 |
+
else:
|
| 91 |
+
texts = text
|
| 92 |
|
| 93 |
+
# Truncate texts if necessary to avoid tokenization issues
|
| 94 |
+
truncated_texts = [t[:50000] if len(t) > 50000 else t for t in texts]
|
| 95 |
+
|
| 96 |
+
# Generate embeddings
|
| 97 |
try:
|
| 98 |
+
embeddings = self.model.encode(truncated_texts, batch_size=batch_size,
|
| 99 |
+
show_progress_bar=False, convert_to_numpy=True)
|
| 100 |
+
return embeddings
|
|
|
|
|
|
|
|
|
|
| 101 |
except Exception as e:
|
| 102 |
+
logger.error(f"Error generating embeddings: {e}")
|
| 103 |
+
# Return zero embeddings as fallback
|
| 104 |
+
return np.zeros((len(truncated_texts), self.vector_size))
|
| 105 |
|
| 106 |
+
class VectorStoreManager:
|
| 107 |
+
"""Manage Chroma vector store operations - upload, query, etc."""
|
| 108 |
|
| 109 |
+
def __init__(self, config: Config):
|
| 110 |
+
self.config = config
|
| 111 |
+
|
| 112 |
+
# Initialize Chroma client (local persistence)
|
| 113 |
+
logger.info(f"Initializing Chroma at {config.local_dir}")
|
| 114 |
+
self.client = chromadb.PersistentClient(path=config.local_dir)
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# Get or create collection
|
| 117 |
+
try:
|
| 118 |
+
# Initialize embedding model
|
| 119 |
+
logger.info("Loading embedding model...")
|
| 120 |
+
self.embedding_engine = EmbeddingEngine(config.embedding_model)
|
| 121 |
+
logger.info(f"Using model: {self.embedding_engine.model_name}")
|
| 122 |
+
|
| 123 |
+
# Create embedding function
|
| 124 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 125 |
+
model_name=self.embedding_engine.model_name
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Try to get existing collection
|
| 129 |
+
try:
|
| 130 |
+
self.collection = self.client.get_collection(
|
| 131 |
+
name=config.collection_name,
|
| 132 |
+
embedding_function=sentence_transformer_ef
|
| 133 |
+
)
|
| 134 |
+
logger.info(f"Using existing collection: {config.collection_name}")
|
| 135 |
+
except:
|
| 136 |
+
# Create new collection if it doesn't exist
|
| 137 |
+
self.collection = self.client.create_collection(
|
| 138 |
+
name=config.collection_name,
|
| 139 |
+
embedding_function=sentence_transformer_ef,
|
| 140 |
+
metadata={"hnsw:space": "cosine"}
|
| 141 |
+
)
|
| 142 |
+
logger.info(f"Created new collection: {config.collection_name}")
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Error initializing Chroma collection: {e}")
|
| 146 |
+
sys.exit(1)
|
| 147 |
+
|
| 148 |
+
def query(self, query_text: str, n_results: int = 5) -> List[Dict]:
|
| 149 |
+
"""
|
| 150 |
+
Query the vector store with a text query
|
| 151 |
+
"""
|
| 152 |
+
try:
|
| 153 |
+
# Query the collection
|
| 154 |
+
search_results = self.collection.query(
|
| 155 |
+
query_texts=[query_text],
|
| 156 |
+
n_results=n_results,
|
| 157 |
+
include=["documents", "metadatas", "distances"]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Format results
|
| 161 |
+
results = []
|
| 162 |
+
if search_results["documents"] and len(search_results["documents"][0]) > 0:
|
| 163 |
+
for i in range(len(search_results["documents"][0])):
|
| 164 |
+
results.append({
|
| 165 |
+
'document': search_results["documents"][0][i],
|
| 166 |
+
'metadata': search_results["metadatas"][0][i],
|
| 167 |
+
'score': 1.0 - search_results["distances"][0][i] # Convert distance to similarity
|
| 168 |
+
})
|
| 169 |
+
|
| 170 |
+
return results
|
| 171 |
+
except Exception as e:
|
| 172 |
+
logger.error(f"Error querying collection: {e}")
|
| 173 |
+
return []
|
| 174 |
+
|
| 175 |
+
def get_statistics(self) -> Dict[str, Any]:
|
| 176 |
+
"""Get statistics about the vector store"""
|
| 177 |
+
stats = {}
|
| 178 |
|
| 179 |
+
try:
|
| 180 |
+
# Get collection count
|
| 181 |
+
collection_info = self.collection.count()
|
| 182 |
+
stats['total_documents'] = collection_info
|
| 183 |
+
|
| 184 |
+
# Estimate unique files - with no chunking, each document is a file
|
| 185 |
+
stats['unique_files'] = collection_info
|
| 186 |
+
except Exception as e:
|
| 187 |
+
logger.error(f"Error getting statistics: {e}")
|
| 188 |
+
stats['error'] = str(e)
|
| 189 |
|
| 190 |
+
return stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
class RAGSystem:
|
| 193 |
+
"""Retrieval-Augmented Generation with multiple LLM providers"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
def __init__(self, vector_store: VectorStoreManager):
|
| 196 |
+
self.vector_store = vector_store
|
| 197 |
+
self.openai_client = None
|
| 198 |
+
self.gemini_configured = False
|
| 199 |
|
| 200 |
+
def setup_openai(self, api_key: str):
|
| 201 |
+
"""Set up OpenAI client with API key"""
|
|
|
|
|
|
|
| 202 |
try:
|
| 203 |
+
self.openai_client = OpenAI(api_key=api_key)
|
| 204 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
except Exception as e:
|
| 206 |
+
logger.error(f"Error initializing OpenAI client: {e}")
|
| 207 |
+
return False
|
| 208 |
|
| 209 |
+
def setup_gemini(self, api_key: str):
|
| 210 |
+
"""Set up Gemini with API key"""
|
|
|
|
|
|
|
| 211 |
try:
|
| 212 |
+
genai.configure(api_key=api_key)
|
| 213 |
+
self.gemini_configured = True
|
| 214 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
except Exception as e:
|
| 216 |
+
logger.error(f"Error configuring Gemini: {e}")
|
| 217 |
+
return False
|
| 218 |
|
| 219 |
+
def format_context(self, documents: List[Dict]) -> str:
|
| 220 |
+
"""Format retrieved documents into context for the LLM"""
|
| 221 |
+
if not documents:
|
| 222 |
+
return "No relevant documents found."
|
| 223 |
+
|
| 224 |
+
context_parts = []
|
| 225 |
+
for i, doc in enumerate(documents):
|
| 226 |
+
metadata = doc['metadata']
|
| 227 |
+
title = metadata.get('title', metadata.get('filename', 'Unknown document'))
|
| 228 |
+
|
| 229 |
+
# For readability, limit length of context document
|
| 230 |
+
doc_text = doc['document']
|
| 231 |
+
if len(doc_text) > 10000: # Limit long documents in context
|
| 232 |
+
doc_text = doc_text[:10000] + "... [Document truncated for context]"
|
| 233 |
+
|
| 234 |
+
context_parts.append(f"Document {i+1} - {title}:\n{doc_text}\n")
|
| 235 |
+
|
| 236 |
+
return "\n".join(context_parts)
|
| 237 |
+
|
| 238 |
+
def generate_response_openai(self, query: str, context: str) -> str:
|
| 239 |
+
"""Generate a response using OpenAI model with context"""
|
| 240 |
+
if not self.openai_client:
|
| 241 |
+
return "Error: OpenAI API key not configured. Please enter an API key in the settings tab."
|
| 242 |
+
|
| 243 |
+
system_prompt = """
|
| 244 |
+
You are a helpful assistant that answers questions based on the context provided.
|
| 245 |
+
Use the information from the context to answer the user's question.
|
| 246 |
+
If the context doesn't contain the information needed, say so clearly.
|
| 247 |
+
Always cite the specific sections from the context that you used in your answer.
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
try:
|
| 251 |
+
response = self.openai_client.chat.completions.create(
|
| 252 |
+
model="gpt-4o-mini", # Use GPT-4o mini
|
| 253 |
+
messages=[
|
| 254 |
+
{"role": "system", "content": system_prompt},
|
| 255 |
+
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
| 256 |
+
],
|
| 257 |
+
temperature=0.3, # Lower temperature for more factual responses
|
| 258 |
+
max_tokens=1000,
|
| 259 |
+
)
|
| 260 |
+
return response.choices[0].message.content
|
| 261 |
+
except Exception as e:
|
| 262 |
+
logger.error(f"Error generating response with OpenAI: {e}")
|
| 263 |
+
return f"Error generating response with OpenAI: {str(e)}"
|
| 264 |
|
| 265 |
+
def generate_response_gemini(self, query: str, context: str) -> str:
|
| 266 |
+
"""Generate a response using Gemini with context"""
|
| 267 |
+
if not self.gemini_configured:
|
| 268 |
+
return "Error: Google AI API key not configured. Please enter an API key in the settings tab."
|
| 269 |
+
|
| 270 |
+
prompt = f"""
|
| 271 |
+
You are a helpful assistant that answers questions based on the context provided.
|
| 272 |
+
Use the information from the context to answer the user's question.
|
| 273 |
+
If the context doesn't contain the information needed, say so clearly.
|
| 274 |
+
Always cite the specific sections from the context that you used in your answer.
|
| 275 |
+
|
| 276 |
+
Context:
|
| 277 |
+
{context}
|
| 278 |
|
| 279 |
+
Question: {query}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
"""
|
| 281 |
+
|
| 282 |
+
try:
|
| 283 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 284 |
+
response = model.generate_content(prompt)
|
| 285 |
+
return response.text
|
| 286 |
+
except Exception as e:
|
| 287 |
+
logger.error(f"Error generating response with Gemini: {e}")
|
| 288 |
+
return f"Error generating response with Gemini: {str(e)}"
|
| 289 |
+
|
| 290 |
+
def query_and_generate(self, query: str, n_results: int = 5, model: str = "openai") -> str:
|
| 291 |
+
"""Retrieve relevant documents and generate a response using the specified model"""
|
| 292 |
+
# Query vector store
|
| 293 |
+
documents = self.vector_store.query(query, n_results=n_results)
|
| 294 |
+
|
| 295 |
+
if not documents:
|
| 296 |
+
return "No relevant documents found to answer your question."
|
| 297 |
+
|
| 298 |
+
# Format context
|
| 299 |
+
context = self.format_context(documents)
|
| 300 |
+
|
| 301 |
+
# Generate response with the appropriate model
|
| 302 |
+
if model == "openai":
|
| 303 |
+
return self.generate_response_openai(query, context)
|
| 304 |
+
elif model == "gemini":
|
| 305 |
+
return self.generate_response_gemini(query, context)
|
| 306 |
+
else:
|
| 307 |
+
return f"Unknown model: {model}"
|
| 308 |
+
|
| 309 |
+
def rag_chat(query, n_results, model_choice, rag_system):
|
| 310 |
+
"""Function to handle RAG chat queries"""
|
| 311 |
+
return rag_system.query_and_generate(query, n_results=int(n_results), model=model_choice)
|
| 312 |
+
|
| 313 |
+
def simple_query(query, n_results, vector_store):
|
| 314 |
+
"""Function to handle simple vector store queries"""
|
| 315 |
+
results = vector_store.query(query, n_results=int(n_results))
|
| 316 |
+
|
| 317 |
+
# Format results for display
|
| 318 |
+
formatted = []
|
| 319 |
+
for i, res in enumerate(results):
|
| 320 |
+
metadata = res['metadata']
|
| 321 |
+
title = metadata.get('title', metadata.get('filename', 'Unknown'))
|
| 322 |
+
# Limit preview text for display
|
| 323 |
+
preview = res['document'][:800] + '...' if len(res['document']) > 800 else res['document']
|
| 324 |
+
formatted.append(f"**Result {i+1}** (Similarity: {res['score']:.2f})\n\n"
|
| 325 |
+
f"**Source:** {title}\n\n"
|
| 326 |
+
f"**Content:**\n{preview}\n\n"
|
| 327 |
+
f"---\n")
|
| 328 |
+
|
| 329 |
+
return "\n".join(formatted) if formatted else "No results found."
|
| 330 |
+
|
| 331 |
+
def get_db_stats(vector_store):
|
| 332 |
+
"""Function to get vector store statistics"""
|
| 333 |
+
stats = vector_store.get_statistics()
|
| 334 |
+
return (f"Total documents: {stats.get('total_documents', 0)}\n"
|
| 335 |
+
f"Unique files: {stats.get('unique_files', 0)}")
|
| 336 |
+
|
| 337 |
+
def update_api_keys(openai_key, gemini_key, rag_system):
|
| 338 |
+
"""Update API keys for the RAG system"""
|
| 339 |
+
success_msg = []
|
| 340 |
+
|
| 341 |
+
if openai_key:
|
| 342 |
+
if rag_system.setup_openai(openai_key):
|
| 343 |
+
success_msg.append("β
OpenAI API key configured successfully")
|
| 344 |
+
else:
|
| 345 |
+
success_msg.append("β Failed to configure OpenAI API key")
|
| 346 |
+
|
| 347 |
+
if gemini_key:
|
| 348 |
+
if rag_system.setup_gemini(gemini_key):
|
| 349 |
+
success_msg.append("β
Google AI API key configured successfully")
|
| 350 |
+
else:
|
| 351 |
+
success_msg.append("β Failed to configure Google AI API key")
|
| 352 |
+
|
| 353 |
+
if not success_msg:
|
| 354 |
+
return "Please enter at least one API key"
|
| 355 |
+
|
| 356 |
+
return "\n".join(success_msg)
|
| 357 |
|
| 358 |
+
# Main function to run the application
|
| 359 |
+
def main():
|
| 360 |
+
# Set up paths for existing Chroma database
|
| 361 |
+
chroma_dir = Path("./chroma_data")
|
| 362 |
+
|
| 363 |
+
# Initialize the system
|
| 364 |
+
config = Config(
|
| 365 |
+
local_dir=str(chroma_dir),
|
| 366 |
+
collection_name="markdown_docs"
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Initialize vector store manager with existing collection
|
| 370 |
+
vector_store = VectorStoreManager(config)
|
| 371 |
+
|
| 372 |
+
# Initialize RAG system without API keys initially
|
| 373 |
+
rag_system = RAGSystem(vector_store)
|
| 374 |
|
| 375 |
+
# Define Gradio app
|
| 376 |
+
def rag_chat_wrapper(query, n_results, model_choice):
|
| 377 |
+
return rag_chat(query, n_results, model_choice, rag_system)
|
|
|
|
| 378 |
|
| 379 |
+
def simple_query_wrapper(query, n_results):
|
| 380 |
+
return simple_query(query, n_results, vector_store)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
+
def update_api_keys_wrapper(openai_key, gemini_key):
|
| 383 |
+
return update_api_keys(openai_key, gemini_key, rag_system)
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
+
# Create the Gradio interface
|
| 386 |
+
with gr.Blocks(title="Markdown RAG System") as app:
|
| 387 |
+
gr.Markdown("# RAG System with Multiple LLM Providers")
|
| 388 |
|
| 389 |
+
with gr.Tab("Chat with Documents"):
|
| 390 |
+
with gr.Row():
|
| 391 |
+
with gr.Column(scale=3):
|
| 392 |
+
query_input = gr.Textbox(label="Question", placeholder="Ask a question about your documents...")
|
| 393 |
+
num_results = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of documents to retrieve")
|
| 394 |
+
model_choice = gr.Radio(
|
| 395 |
+
choices=["openai", "gemini"],
|
| 396 |
+
value="openai",
|
| 397 |
+
label="Choose LLM Provider",
|
| 398 |
+
info="Select which model to use for generating answers"
|
| 399 |
+
)
|
| 400 |
+
query_button = gr.Button("Ask", variant="primary")
|
| 401 |
+
|
| 402 |
+
with gr.Column(scale=7):
|
| 403 |
+
response_output = gr.Markdown(label="Response")
|
| 404 |
+
|
| 405 |
+
# Database stats
|
| 406 |
+
stats_display = gr.Textbox(label="Database Statistics", value=get_db_stats(vector_store))
|
| 407 |
+
refresh_button = gr.Button("Refresh Statistics")
|
| 408 |
+
|
| 409 |
+
with gr.Tab("Document Search"):
|
| 410 |
+
search_input = gr.Textbox(label="Search Query", placeholder="Search your documents...")
|
| 411 |
+
search_num = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of results")
|
| 412 |
+
search_button = gr.Button("Search", variant="primary")
|
| 413 |
+
search_output = gr.Markdown(label="Search Results")
|
| 414 |
|
| 415 |
+
with gr.Tab("Settings"):
|
| 416 |
+
gr.Markdown("""
|
| 417 |
+
## API Keys Configuration
|
| 418 |
+
|
| 419 |
+
This application can use either OpenAI's GPT-4o-mini or Google's Gemini 1.5 Flash for generating responses.
|
| 420 |
+
You need to provide at least one API key to use the chat functionality.
|
| 421 |
+
""")
|
| 422 |
+
|
| 423 |
+
openai_key_input = gr.Textbox(
|
| 424 |
+
label="OpenAI API Key",
|
| 425 |
+
placeholder="Enter your OpenAI API key here...",
|
| 426 |
+
type="password"
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
gemini_key_input = gr.Textbox(
|
| 430 |
+
label="Google AI API Key",
|
| 431 |
+
placeholder="Enter your Google AI API key here...",
|
| 432 |
+
type="password"
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
save_keys_button = gr.Button("Save API Keys", variant="primary")
|
| 436 |
+
api_status = gr.Markdown("")
|
| 437 |
|
| 438 |
+
# Set up events
|
| 439 |
+
query_button.click(
|
| 440 |
+
fn=rag_chat_wrapper,
|
| 441 |
+
inputs=[query_input, num_results, model_choice],
|
| 442 |
+
outputs=response_output
|
| 443 |
+
)
|
| 444 |
|
| 445 |
+
refresh_button.click(
|
| 446 |
+
fn=lambda: get_db_stats(vector_store),
|
| 447 |
+
inputs=None,
|
| 448 |
+
outputs=stats_display
|
| 449 |
+
)
|
| 450 |
|
| 451 |
+
search_button.click(
|
| 452 |
+
fn=simple_query_wrapper,
|
| 453 |
+
inputs=[search_input, search_num],
|
| 454 |
+
outputs=search_output
|
| 455 |
+
)
|
| 456 |
|
| 457 |
+
save_keys_button.click(
|
| 458 |
+
fn=update_api_keys_wrapper,
|
| 459 |
+
inputs=[openai_key_input, gemini_key_input],
|
| 460 |
+
outputs=api_status
|
| 461 |
+
)
|
| 462 |
|
| 463 |
+
# Launch the interface
|
| 464 |
+
app.launch()
|
| 465 |
|
| 466 |
if __name__ == "__main__":
|
| 467 |
+
main()
|
|
|