File size: 3,831 Bytes
a1a543e
 
 
 
a97bf6b
f7f857f
a1a543e
588b2d4
 
a1a543e
 
 
 
 
 
337c211
a1a543e
a97bf6b
a1a543e
a97bf6b
a1a543e
 
f7f857f
7bb9775
c3cbdc6
 
 
 
a1a543e
 
 
 
 
 
 
 
c3cbdc6
a1a543e
 
c3cbdc6
f7f857f
a1a543e
f7f857f
a1a543e
 
f7f857f
a1a543e
 
f7f857f
 
a1a543e
 
 
f7f857f
 
a1a543e
 
 
 
 
 
 
 
588b2d4
f7f857f
b147c55
 
 
a1a543e
 
 
336d41b
 
 
 
 
 
 
 
 
f7f857f
 
a1a543e
f7f857f
a1a543e
 
c3cbdc6
a1a543e
f7f857f
 
a1a543e
f7f857f
 
 
 
a1a543e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from threading import Thread

import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import time

model_id = "EleutherAI/pythia-6.9b-deduped"
assistant_id = "EleutherAI/pythia-70m-deduped"
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())


if torch_device == "cuda":
    model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
else:
    model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(torch_device)


def run_generation(user_text, use_assistant, temperature, max_new_tokens):
    if temperature < 0.1:
        do_sample = False
    else:
        do_sample = True

    # Get the model and tokenizer, and tokenize the user text.
    model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device)

    # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
    # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        assistant_model=assistant_model if use_assistant else None,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        top_p=0.95,
        temperature=float(temperature),
        top_k=50,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    start = time.time()
    t.start()

    # Pull the generated text from the streamer, and update the model output. Return the model output and time
    # spent so far.
    model_output = ""
    for new_text in streamer:
        model_output += new_text
        yield [model_output, round(time.time() - start, 3)]
    return [model_output, round(time.time() - start, 3)]


def reset_textbox():
    return gr.update(value='')


with gr.Blocks() as demo:
    gr.Markdown(
        "# 🤗 Assisted Generation Demo\n"
        f"- Model: {model_id} (using INT8)\n"
        f"- Assistant Model: {assistant_id}\n"
        "- Disclaimer: due to INT8 quantization and the use of causal masking in assisted generation, the output "
        "of greedy decoding may differ in rare occasions."
    )

    with gr.Row():
        with gr.Column(scale=4):
            user_text = gr.Textbox(
                placeholder="A sequence: one, two, three, ",
                label="Prompt"
            )
            model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
            button_submit = gr.Button(value="Submit")

        with gr.Column(scale=1, min_width=200):
            gr.Markdown("### Generation Settings")
            use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True)
            max_new_tokens = gr.Slider(
                minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens",
            )
            temperature = gr.Slider(
                minimum=0.0, maximum=2.0, value=0.0, step=0.1, interactive=True, label="Temperature (0.0 = Greedy)",
            )
            gr.Markdown("### Generation time (seconds)")
            generation_time = gr.Textbox(lines=1, interactive=False, show_label=False)

    generate_inputs = [user_text, use_assistant, temperature, max_new_tokens]
    generate_outputs = [model_output, generation_time]
    user_text.submit(run_generation, generate_inputs, generate_outputs)
    button_submit.click(run_generation, generate_inputs, generate_outputs)

    demo.queue(max_size=32).launch(enable_queue=True)