Spaces:
Running
on
Zero
Running
on
Zero
mvp
Browse files- app.py +89 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from threading import Thread
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer
|
| 6 |
+
|
| 7 |
+
model_id = "declare-lab/flan-alpaca-large"
|
| 8 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
print("Running on device:", torch_device)
|
| 10 |
+
print("CPU threads:", torch.get_num_threads())
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
if torch_device == "cuda":
|
| 14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
|
| 15 |
+
else:
|
| 16 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
| 21 |
+
# Get the model and tokenizer, and tokenize the user text.
|
| 22 |
+
model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device)
|
| 23 |
+
|
| 24 |
+
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
| 25 |
+
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
| 26 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 27 |
+
generate_kwargs = dict(
|
| 28 |
+
model_inputs,
|
| 29 |
+
streamer=streamer,
|
| 30 |
+
max_new_tokens=max_new_tokens,
|
| 31 |
+
do_sample=True,
|
| 32 |
+
top_p=top_p,
|
| 33 |
+
temperature=float(temperature),
|
| 34 |
+
top_k=top_k
|
| 35 |
+
)
|
| 36 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 37 |
+
t.start()
|
| 38 |
+
|
| 39 |
+
# Pull the generated text from the streamer, and update the model output.
|
| 40 |
+
model_output = ""
|
| 41 |
+
for new_text in streamer:
|
| 42 |
+
model_output += new_text
|
| 43 |
+
yield model_output
|
| 44 |
+
return model_output
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def reset_textbox():
|
| 48 |
+
return gr.update(value='')
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
with gr.Blocks() as demo:
|
| 52 |
+
duplicate_link = "https://huggingface.co/spaces/joaogante/transformers_streaming?duplicate=true"
|
| 53 |
+
gr.Markdown(
|
| 54 |
+
"# 🤗 Transformers 🔥Streaming🔥 on Gradio\n"
|
| 55 |
+
"This demo showcases the use of the "
|
| 56 |
+
"[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) "
|
| 57 |
+
"of 🤗 Transformers with Gradio to generate text in real-time. It uses "
|
| 58 |
+
f"[{model_id}](https://huggingface.co/{model_id}) and the Spaces free compute tier.\n\n"
|
| 59 |
+
f"Feel free to [duplicate this Space]({duplicate_link}) to try your own models or use this space as a "
|
| 60 |
+
"template! 💛"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
with gr.Column(scale=4):
|
| 65 |
+
user_text = gr.Textbox(
|
| 66 |
+
placeholder="Write an email about an alpaca that likes flan",
|
| 67 |
+
label="User input"
|
| 68 |
+
)
|
| 69 |
+
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
| 70 |
+
button_submit = gr.Button(value="Submit")
|
| 71 |
+
|
| 72 |
+
with gr.Column(scale=1):
|
| 73 |
+
max_new_tokens = gr.Slider(
|
| 74 |
+
minimum=1, maximum=1000, value=250, step=1, interactive=True, label="Max New Tokens",
|
| 75 |
+
)
|
| 76 |
+
top_p = gr.Slider(
|
| 77 |
+
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
|
| 78 |
+
)
|
| 79 |
+
top_k = gr.Slider(
|
| 80 |
+
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
|
| 81 |
+
)
|
| 82 |
+
temperature = gr.Slider(
|
| 83 |
+
minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature",
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
| 87 |
+
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
| 88 |
+
|
| 89 |
+
demo.queue(max_size=32).launch(enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
bitsandbytes
|
| 3 |
+
torch
|
| 4 |
+
git+https://github.com/huggingface/transformers.git # transformers from main (TextIteratorStreamer will be added in v4.28)
|