| import numpy as np | |
| def get_cindex(Y, P): | |
| summ = 0 | |
| pair = 0 | |
| for i in range(1, len(Y)): | |
| for j in range(0, i): | |
| if i is not j: | |
| if(Y[i] > Y[j]): | |
| pair +=1 | |
| summ += 1* (P[i] > P[j]) + 0.5 * (P[i] == P[j]) | |
| if pair is not 0: | |
| return summ/pair | |
| else: | |
| return 0 | |
| def r_squared_error(y_obs,y_pred): | |
| y_obs = np.array(y_obs) | |
| y_pred = np.array(y_pred) | |
| y_obs_mean = [np.mean(y_obs) for y in y_obs] | |
| y_pred_mean = [np.mean(y_pred) for y in y_pred] | |
| mult = sum((y_pred - y_pred_mean) * (y_obs - y_obs_mean)) | |
| mult = mult * mult | |
| y_obs_sq = sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean)) | |
| y_pred_sq = sum((y_pred - y_pred_mean) * (y_pred - y_pred_mean) ) | |
| return mult / float(y_obs_sq * y_pred_sq) | |
| def get_k(y_obs,y_pred): | |
| y_obs = np.array(y_obs) | |
| y_pred = np.array(y_pred) | |
| return sum(y_obs*y_pred) / float(sum(y_pred*y_pred)) | |
| def squared_error_zero(y_obs,y_pred): | |
| k = get_k(y_obs,y_pred) | |
| y_obs = np.array(y_obs) | |
| y_pred = np.array(y_pred) | |
| y_obs_mean = [np.mean(y_obs) for y in y_obs] | |
| upp = sum((y_obs - (k*y_pred)) * (y_obs - (k* y_pred))) | |
| down= sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean)) | |
| return 1 - (upp / float(down)) | |
| def get_rm2(ys_orig,ys_line): | |
| r2 = r_squared_error(ys_orig, ys_line) | |
| r02 = squared_error_zero(ys_orig, ys_line) | |
| return r2 * (1 - np.sqrt(np.absolute((r2*r2)-(r02*r02)))) |