Upload 17 files
Browse files- .gitattributes +2 -0
- app.py +27 -16
- config/config_hparam.json +26 -0
- config/predict.json +26 -0
- util/__pycache__/attention_flow.cpython-38.pyc +0 -0
- util/__pycache__/emetric.cpython-38.pyc +0 -0
- util/__pycache__/regression_metric.cpython-38.pyc +0 -0
- util/__pycache__/stream.cpython-38.pyc +0 -0
- util/__pycache__/utils.cpython-38.pyc +0 -0
- util/attention_flow.py +195 -0
- util/attention_plot.py +93 -0
- util/boxplot.py +201 -0
- util/data/bindingdb_kd.tab +3 -0
- util/data/davis.tab +3 -0
- util/emetric.py +59 -0
- util/load_dataset.py +32 -0
- util/make_external_validation.py +28 -0
- util/utils.py +45 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
util/data/bindingdb_kd.tab filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
util/data/davis.tab filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -13,12 +13,16 @@ st.title("🔋DeepDAP")
|
|
| 13 |
|
| 14 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
| 15 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
if text_search:
|
| 23 |
st.write(df_search)
|
| 24 |
st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
|
|
@@ -28,16 +32,23 @@ st.download_button(
|
|
| 28 |
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
| 29 |
)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
pce = run.smiles_aas_test( str(acceptor ), str(donor) )
|
| 41 |
-
st.markdown("⚡PCE: ``{pce}``")
|
| 42 |
except:
|
| 43 |
-
st.markdown("⚡PCE: None ")
|
|
|
|
| 13 |
|
| 14 |
url1= r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0/gviz/tq?tqx=out:csv&sheet=dap"
|
| 15 |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')
|
| 16 |
+
col1, col2 = st.columns(2)
|
| 17 |
+
with col1:
|
| 18 |
+
text_search = st.text_input("🔍Search papers or molecules", value="")
|
| 19 |
+
m1 = df1["Donor_Name"].str.contains(text_search)
|
| 20 |
+
m2 = df1["reference"].str.contains(text_search)
|
| 21 |
+
m3 = df1["Acceptor_Name"].str.contains(text_search)
|
| 22 |
+
df_search = df1[m1 | m2|m3]
|
| 23 |
+
with col2:
|
| 24 |
+
st.link_button("📝Database", r"https://docs.google.com/spreadsheets/d/1AKkZS04VF3osFT36aNHIb4iUbV8D1uNfsldcpHXogj0")
|
| 25 |
+
st.caption('🎉If you want to update the database, click the button.')
|
| 26 |
if text_search:
|
| 27 |
st.write(df_search)
|
| 28 |
st.download_button( "⬇️Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
|
|
|
|
| 32 |
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
|
| 33 |
)
|
| 34 |
|
| 35 |
+
option = st.selectbox(
|
| 36 |
+
"How would you like to be contacted?",
|
| 37 |
+
("Donor", "Acceptor"), placeholder="Select the type of active layer..."
|
| 38 |
+
)
|
| 39 |
+
if option == 'Acceptor':
|
| 40 |
+
|
| 41 |
+
molecule = st.text_input("👨🔬Acceptor Molecule" )
|
| 42 |
+
acceptor= st_ketcher(molecule )
|
| 43 |
+
st.markdown(f"🏆New SMILES of edited acceptor molecules: {acceptor}")
|
| 44 |
+
donor= st.text_input("📋 Donor Molecule")
|
| 45 |
+
if option =='Donor':
|
| 46 |
+
do= st.text_input("👨🔬Donor Molecule" )
|
| 47 |
+
donor = st_ketcher(do)
|
| 48 |
+
st.markdown(f"🏆New SMILES of edited donor molecules: {donor}")
|
| 49 |
+
acceptor = st.text_input("📋 Acceptor Molecule")
|
| 50 |
try:
|
| 51 |
pce = run.smiles_aas_test( str(acceptor ), str(donor) )
|
| 52 |
+
st.markdown(f"⚡PCE: ``{pce}``")
|
| 53 |
except:
|
| 54 |
+
st.markdown(f"⚡PCE: None ")
|
config/config_hparam.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{ "name": "biomarker_log",
|
| 2 |
+
|
| 3 |
+
"d_model_name" : "DeepChem/ChemBERTa-10M-MTR",
|
| 4 |
+
"p_model_name" : "DeepChem/ChemBERTa-77M-MLM",
|
| 5 |
+
"gpu_ids" : "0",
|
| 6 |
+
"model_mode" : "train",
|
| 7 |
+
"load_checkpoint" : "./checkpoint/bindingDB/test.ckpt",
|
| 8 |
+
|
| 9 |
+
"prot_maxlength" : 360,
|
| 10 |
+
"layer_limit" : true,
|
| 11 |
+
|
| 12 |
+
"max_epoch": 16,
|
| 13 |
+
"batch_size": 40,
|
| 14 |
+
"num_workers": 0,
|
| 15 |
+
|
| 16 |
+
"task_name" : "OSC",
|
| 17 |
+
"lr": 1e-4,
|
| 18 |
+
"layer_features" : [512, 128, 64, 1],
|
| 19 |
+
"dropout" : 0.1,
|
| 20 |
+
"loss_fn" : "MSE",
|
| 21 |
+
|
| 22 |
+
"traindata_rate" : 1.0,
|
| 23 |
+
"pretrained": {"chem":true, "prot":true},
|
| 24 |
+
"num_seed" : 111
|
| 25 |
+
}
|
| 26 |
+
|
config/predict.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{ "name": "biomarker_log",
|
| 2 |
+
|
| 3 |
+
"d_model_name" : "DeepChem/ChemBERTa-10M-MTR",
|
| 4 |
+
"p_model_name" : "DeepChem/ChemBERTa-77M-MLM",
|
| 5 |
+
"gpu_ids" : "0",
|
| 6 |
+
"model_mode" : "test",
|
| 7 |
+
"load_checkpoint" : "./OSC/test.ckpt",
|
| 8 |
+
|
| 9 |
+
"prot_maxlength" : 360,
|
| 10 |
+
"layer_limit" : true,
|
| 11 |
+
|
| 12 |
+
"max_epoch": 16,
|
| 13 |
+
"batch_size": 40,
|
| 14 |
+
"num_workers": 0,
|
| 15 |
+
|
| 16 |
+
"task_name" : "OSC",
|
| 17 |
+
"lr": 1e-4,
|
| 18 |
+
"layer_features" : [512, 128, 64, 1],
|
| 19 |
+
"dropout" : 0.1,
|
| 20 |
+
"loss_fn" : "MSE",
|
| 21 |
+
|
| 22 |
+
"traindata_rate" : 1.0,
|
| 23 |
+
"pretrained": {"chem":true, "prot":true},
|
| 24 |
+
"num_seed" : 111
|
| 25 |
+
}
|
| 26 |
+
|
util/__pycache__/attention_flow.cpython-38.pyc
ADDED
|
Binary file (6.07 kB). View file
|
|
|
util/__pycache__/emetric.cpython-38.pyc
ADDED
|
Binary file (1.87 kB). View file
|
|
|
util/__pycache__/regression_metric.cpython-38.pyc
ADDED
|
Binary file (1.88 kB). View file
|
|
|
util/__pycache__/stream.cpython-38.pyc
ADDED
|
Binary file (2.96 kB). View file
|
|
|
util/__pycache__/utils.cpython-38.pyc
ADDED
|
Binary file (1.6 kB). View file
|
|
|
util/attention_flow.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import networkx as nx
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import itertools
|
| 9 |
+
import matplotlib as mpl
|
| 10 |
+
# import cugraph as cnx
|
| 11 |
+
|
| 12 |
+
rc={'font.size': 10, 'axes.labelsize': 10, 'legend.fontsize': 10.0,
|
| 13 |
+
'axes.titlesize': 32, 'xtick.labelsize': 20, 'ytick.labelsize': 16}
|
| 14 |
+
plt.rcParams.update(**rc)
|
| 15 |
+
mpl.rcParams['axes.linewidth'] = .5 #set the value globally
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def plot_attention_heatmap(att, s_position, t_positions, input_tokens):
|
| 19 |
+
|
| 20 |
+
cls_att = np.flip(att[:,s_position, t_positions], axis=0)
|
| 21 |
+
xticklb = list(itertools.compress(input_tokens, [i in t_positions for i in np.arange(len(input_tokens))]))
|
| 22 |
+
yticklb = [str(i) if i%2 ==0 else '' for i in np.arange(att.shape[0],0, -1)]
|
| 23 |
+
ax = sns.heatmap(cls_att, xticklabels=xticklb, yticklabels=yticklb, cmap="YlOrRd")
|
| 24 |
+
|
| 25 |
+
return ax
|
| 26 |
+
|
| 27 |
+
def convert_adjmat_tomats(adjmat, n_layers, l):
|
| 28 |
+
mats = np.zeros((n_layers,l,l))
|
| 29 |
+
|
| 30 |
+
for i in np.arange(n_layers):
|
| 31 |
+
mats[i] = adjmat[(i+1)*l:(i+2)*l,i*l:(i+1)*l]
|
| 32 |
+
|
| 33 |
+
return mats
|
| 34 |
+
|
| 35 |
+
def make_residual_attention(attentions):
|
| 36 |
+
all_attention = [att.detach().cpu().numpy() for att in attentions]
|
| 37 |
+
attentions_mat = np.asarray(all_attention)[:,0]
|
| 38 |
+
|
| 39 |
+
res_att_mat = attentions_mat.sum(axis=1)/attentions_mat.shape[1]
|
| 40 |
+
res_att_mat = res_att_mat + np.eye(res_att_mat.shape[1])[None,...]
|
| 41 |
+
res_att_mat = res_att_mat / res_att_mat.sum(axis=-1)[...,None]
|
| 42 |
+
|
| 43 |
+
return attentions_mat, res_att_mat
|
| 44 |
+
|
| 45 |
+
## -------------------------------------------------------- ##
|
| 46 |
+
## -- Make flow network (No Print Node - edge Connection)-- ##
|
| 47 |
+
## -------------------------------------------------------- ##
|
| 48 |
+
|
| 49 |
+
def make_flow_network(mat, input_tokens):
|
| 50 |
+
n_layers, length, _ = mat.shape
|
| 51 |
+
adj_mat = np.zeros(((n_layers+1)*length, (n_layers+1)*length))
|
| 52 |
+
labels_to_index = {}
|
| 53 |
+
for k in np.arange(length):
|
| 54 |
+
labels_to_index[str(k)+"_"+input_tokens[k]] = k
|
| 55 |
+
|
| 56 |
+
for i in np.arange(1,n_layers+1):
|
| 57 |
+
for k_f in np.arange(length):
|
| 58 |
+
index_from = (i)*length+k_f
|
| 59 |
+
label = "L"+str(i)+"_"+str(k_f)
|
| 60 |
+
labels_to_index[label] = index_from
|
| 61 |
+
for k_t in np.arange(length):
|
| 62 |
+
index_to = (i-1)*length+k_t
|
| 63 |
+
adj_mat[index_from][index_to] = mat[i-1][k_f][k_t]
|
| 64 |
+
|
| 65 |
+
net_graph=nx.from_numpy_matrix(adj_mat, create_using=nx.DiGraph())
|
| 66 |
+
for i in np.arange(adj_mat.shape[0]):
|
| 67 |
+
for j in np.arange(adj_mat.shape[1]):
|
| 68 |
+
nx.set_edge_attributes(net_graph, {(i,j): adj_mat[i,j]}, 'capacity')
|
| 69 |
+
|
| 70 |
+
return net_graph, labels_to_index
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def make_input_node(attention_mat, res_labels_to_index):
|
| 74 |
+
input_nodes = []
|
| 75 |
+
for key in res_labels_to_index:
|
| 76 |
+
if res_labels_to_index[key] < attention_mat.shape[-1]:
|
| 77 |
+
input_nodes.append(key)
|
| 78 |
+
|
| 79 |
+
return input_nodes
|
| 80 |
+
## ------------------------------------------------ ##
|
| 81 |
+
## -- Draw Attention flow node - Edge Connection -- ##
|
| 82 |
+
## ------------------------------------------------ ##
|
| 83 |
+
|
| 84 |
+
##-- networkx graph Initation and Calculation flow --##
|
| 85 |
+
def get_adjmat(mat, input_tokens):
|
| 86 |
+
n_layers, length, _ = mat.shape
|
| 87 |
+
adj_mat = np.zeros(((n_layers+1)*length, (n_layers+1)*length))
|
| 88 |
+
labels_to_index = {}
|
| 89 |
+
for k in np.arange(length):
|
| 90 |
+
labels_to_index[str(k)+"_"+input_tokens[k]] = k
|
| 91 |
+
|
| 92 |
+
for i in np.arange(1,n_layers+1):
|
| 93 |
+
for k_f in np.arange(length):
|
| 94 |
+
index_from = (i)*length+k_f
|
| 95 |
+
label = "L"+str(i)+"_"+str(k_f)
|
| 96 |
+
labels_to_index[label] = index_from
|
| 97 |
+
for k_t in np.arange(length):
|
| 98 |
+
index_to = (i-1)*length+k_t
|
| 99 |
+
adj_mat[index_from][index_to] = mat[i-1][k_f][k_t]
|
| 100 |
+
|
| 101 |
+
return adj_mat, labels_to_index
|
| 102 |
+
|
| 103 |
+
def draw_attention_graph(adjmat, labels_to_index, n_layers, length):
|
| 104 |
+
A = adjmat
|
| 105 |
+
net_graph=nx.from_numpy_matrix(A, create_using=nx.DiGraph())
|
| 106 |
+
for i in np.arange(A.shape[0]):
|
| 107 |
+
for j in np.arange(A.shape[1]):
|
| 108 |
+
nx.set_edge_attributes(net_graph, {(i,j): A[i,j]}, 'capacity')
|
| 109 |
+
|
| 110 |
+
pos = {}
|
| 111 |
+
label_pos = {}
|
| 112 |
+
for i in np.arange(n_layers+1):
|
| 113 |
+
for k_f in np.arange(length):
|
| 114 |
+
pos[i*length+k_f] = ((i+0.4)*2, length - k_f)
|
| 115 |
+
label_pos[i*length+k_f] = (i*2, length - k_f)
|
| 116 |
+
|
| 117 |
+
index_to_labels = {}
|
| 118 |
+
for key in labels_to_index:
|
| 119 |
+
index_to_labels[labels_to_index[key]] = key.split("_")[-1]
|
| 120 |
+
if labels_to_index[key] >= length:
|
| 121 |
+
index_to_labels[labels_to_index[key]] = ''
|
| 122 |
+
|
| 123 |
+
#plt.figure(1,figsize=(20,12))
|
| 124 |
+
nx.draw_networkx_nodes(net_graph,pos,node_color='green', labels=index_to_labels, node_size=50)
|
| 125 |
+
nx.draw_networkx_labels(net_graph,pos=label_pos, labels=index_to_labels, font_size=18)
|
| 126 |
+
|
| 127 |
+
all_weights = []
|
| 128 |
+
#4 a. Iterate through the graph nodes to gather all the weights
|
| 129 |
+
for (node1,node2,data) in net_graph.edges(data=True):
|
| 130 |
+
all_weights.append(data['weight']) #we'll use this when determining edge thickness
|
| 131 |
+
|
| 132 |
+
#4 b. Get unique weights
|
| 133 |
+
unique_weights = list(set(all_weights))
|
| 134 |
+
|
| 135 |
+
#4 c. Plot the edges - one by one!
|
| 136 |
+
for weight in unique_weights:
|
| 137 |
+
#4 d. Form a filtered list with just the weight you want to draw
|
| 138 |
+
weighted_edges = [(node1,node2) for (node1,node2,edge_attr) in net_graph.edges(data=True) if edge_attr['weight']==weight]
|
| 139 |
+
#4 e. I think multiplying by [num_nodes/sum(all_weights)] makes the graphs edges look cleaner
|
| 140 |
+
|
| 141 |
+
w = weight #(weight - min(all_weights))/(max(all_weights) - min(all_weights))
|
| 142 |
+
width = w
|
| 143 |
+
nx.draw_networkx_edges(net_graph,pos,edgelist=weighted_edges,width=width, edge_color='darkblue')
|
| 144 |
+
|
| 145 |
+
return net_graph
|
| 146 |
+
|
| 147 |
+
def compute_flows(G, labels_to_index, input_nodes, length):
|
| 148 |
+
number_of_nodes = len(labels_to_index)
|
| 149 |
+
flow_values=np.zeros((number_of_nodes,number_of_nodes))
|
| 150 |
+
for key in tqdm(labels_to_index, desc="flow algorithms", total=len(labels_to_index)):
|
| 151 |
+
if key not in input_nodes:
|
| 152 |
+
current_layer = int(labels_to_index[key] / length)
|
| 153 |
+
pre_layer = current_layer - 1
|
| 154 |
+
u = labels_to_index[key]
|
| 155 |
+
for inp_node_key in input_nodes:
|
| 156 |
+
v = labels_to_index[inp_node_key]
|
| 157 |
+
flow_value = nx.maximum_flow_value(G,u,v, flow_func=nx.algorithms.flow.edmonds_karp)
|
| 158 |
+
# flow_value = cnx
|
| 159 |
+
flow_values[u][pre_layer*length+v ] = flow_value
|
| 160 |
+
flow_values[u] /= flow_values[u].sum()
|
| 161 |
+
|
| 162 |
+
return flow_values
|
| 163 |
+
|
| 164 |
+
def compute_node_flow(G, labels_to_index, input_nodes, output_nodes,length):
|
| 165 |
+
number_of_nodes = len(labels_to_index)
|
| 166 |
+
flow_values=np.zeros((number_of_nodes,number_of_nodes))
|
| 167 |
+
for key in output_nodes:
|
| 168 |
+
if key not in input_nodes:
|
| 169 |
+
current_layer = int(labels_to_index[key] / length)
|
| 170 |
+
pre_layer = current_layer - 1
|
| 171 |
+
u = labels_to_index[key]
|
| 172 |
+
for inp_node_key in input_nodes:
|
| 173 |
+
v = labels_to_index[inp_node_key]
|
| 174 |
+
flow_value = nx.maximum_flow_value(G,u,v, flow_func=nx.algorithms.flow.edmonds_karp)
|
| 175 |
+
flow_values[u][pre_layer*length+v ] = flow_value
|
| 176 |
+
flow_values[u] /= flow_values[u].sum()
|
| 177 |
+
|
| 178 |
+
return flow_values
|
| 179 |
+
|
| 180 |
+
def compute_joint_attention(att_mat, add_residual=True):
|
| 181 |
+
if add_residual:
|
| 182 |
+
residual_att = np.eye(att_mat.shape[1])[None,...]
|
| 183 |
+
aug_att_mat = att_mat + residual_att
|
| 184 |
+
aug_att_mat = aug_att_mat / aug_att_mat.sum(axis=-1)[...,None]
|
| 185 |
+
else:
|
| 186 |
+
aug_att_mat = att_mat
|
| 187 |
+
|
| 188 |
+
joint_attentions = np.zeros(aug_att_mat.shape)
|
| 189 |
+
|
| 190 |
+
layers = joint_attentions.shape[0]
|
| 191 |
+
joint_attentions[0] = aug_att_mat[0]
|
| 192 |
+
for i in np.arange(1,layers):
|
| 193 |
+
joint_attentions[i] = aug_att_mat[i].dot(joint_attentions[i-1])
|
| 194 |
+
|
| 195 |
+
return joint_attentions
|
util/attention_plot.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
|
| 6 |
+
def make_attention_table(att, tokens, numb, token_idx = 0, layerNumb = -1):
|
| 7 |
+
token_att = att[layerNumb, token_idx, range(1, len(tokens))]
|
| 8 |
+
|
| 9 |
+
token_label=[]
|
| 10 |
+
token_numb=[]
|
| 11 |
+
for idx, token in enumerate(tokens[1:]) :
|
| 12 |
+
token_label.append(f"<b>{token}</b>")
|
| 13 |
+
token_numb.append(f"{idx}")
|
| 14 |
+
|
| 15 |
+
pair = list(zip(token_numb, token_att))
|
| 16 |
+
|
| 17 |
+
df = pd.DataFrame(pair, columns=["Amino acid", "Attention rate"])
|
| 18 |
+
df.to_csv(f"amino_acid_seq_attention_{numb}.csv", index=None)
|
| 19 |
+
|
| 20 |
+
top3_idx = sorted(range(len(token_att)), key=lambda i: token_att[i], reverse=True)[:3]
|
| 21 |
+
|
| 22 |
+
colors = ['cornflowerblue', ] * len(token_numb)
|
| 23 |
+
|
| 24 |
+
for i in top3_idx:
|
| 25 |
+
colors[i] = 'crimson'
|
| 26 |
+
|
| 27 |
+
fig = go.Figure(data=[go.Bar(
|
| 28 |
+
x=df["Amino acid"],
|
| 29 |
+
y=df["Attention rate"],
|
| 30 |
+
# range_y=[min(token_att), max(token_att)],
|
| 31 |
+
marker_color=colors # marker color can be a single color value or an iterable
|
| 32 |
+
)])
|
| 33 |
+
|
| 34 |
+
# fig = px.histogram(df, x="Amino acid", y="Attention rate", range_y=[min(token_att), max(token_att)])
|
| 35 |
+
|
| 36 |
+
fig.update_layout(plot_bgcolor="white")
|
| 37 |
+
fig.update_xaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0)',mirror=False)
|
| 38 |
+
fig.update_yaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0.07)',mirror=False)
|
| 39 |
+
fig.update_layout(title={'text': "<b>Attention rate of amino acid sequence token</b>",
|
| 40 |
+
'font':{'size':40},
|
| 41 |
+
'y': 0.96,
|
| 42 |
+
'x': 0.5,
|
| 43 |
+
'xanchor': 'center',
|
| 44 |
+
'yanchor': 'top'},
|
| 45 |
+
|
| 46 |
+
xaxis=dict(tickmode='array',
|
| 47 |
+
tickvals=token_numb,
|
| 48 |
+
ticktext=token_label
|
| 49 |
+
),
|
| 50 |
+
|
| 51 |
+
xaxis_title={'text': "Amino acid sequence",
|
| 52 |
+
'font':{'size':30}},
|
| 53 |
+
yaxis_title={'text': "Attention rate",
|
| 54 |
+
'font':{'size':30}},
|
| 55 |
+
|
| 56 |
+
font=dict(family="Calibri, monospace",
|
| 57 |
+
size=17
|
| 58 |
+
))
|
| 59 |
+
|
| 60 |
+
fig.write_image(f'figures/Amino_acid_seq_{numb}.png', width=1.5*1200, height=0.75*1200, scale=2)
|
| 61 |
+
fig.show()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def read_attention():
|
| 65 |
+
df = pd.read_csv("../amino_acid_seq_attention.csv")
|
| 66 |
+
# d_flow_values = np.asarray(d_read_flow_values)
|
| 67 |
+
|
| 68 |
+
fig = px.bar(df, x="Amino acid", y="Attention rate", range_y=[min(df["Attention rate"]), max(df["Attention rate"])])
|
| 69 |
+
|
| 70 |
+
fig.update_layout(plot_bgcolor="white")
|
| 71 |
+
fig.update_xaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0)',mirror=False)
|
| 72 |
+
fig.update_yaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0.07)',mirror=False)
|
| 73 |
+
fig.update_layout(title={'text': "<b>Attention rate of amino acid sequence token</b>",
|
| 74 |
+
'font':{'size':40},
|
| 75 |
+
'y': 0.96,
|
| 76 |
+
'x': 0.5,
|
| 77 |
+
'xanchor': 'center',
|
| 78 |
+
'yanchor': 'top'},
|
| 79 |
+
|
| 80 |
+
xaxis_title={'text': "Amino acid sequence",
|
| 81 |
+
'font':{'size':30}},
|
| 82 |
+
yaxis_title={'text': "Attention rate",
|
| 83 |
+
'font':{'size':30}},
|
| 84 |
+
|
| 85 |
+
font=dict(family="Calibri, monospace",
|
| 86 |
+
size=17
|
| 87 |
+
))
|
| 88 |
+
|
| 89 |
+
fig.write_image('figures/Amino_acid_seq.png', width=1.5*1200, height=0.75*1200, scale=2)
|
| 90 |
+
fig.show()
|
| 91 |
+
|
| 92 |
+
if __name__ == '__main__':
|
| 93 |
+
read_attention()
|
util/boxplot.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
from scipy import stats
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
|
| 7 |
+
from plotly.subplots import make_subplots
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
|
| 10 |
+
ROC = 1
|
| 11 |
+
PR = 2
|
| 12 |
+
|
| 13 |
+
def add_p_value_annotation(fig, array_columns, subplot=None, _format=dict(interline=0.03, text_height=1.03, color='black')):
|
| 14 |
+
''' Adds notations giving the p-value between two box plot data (t-test two-sided comparison)
|
| 15 |
+
|
| 16 |
+
Parameters:
|
| 17 |
+
----------
|
| 18 |
+
fig: figure
|
| 19 |
+
plotly boxplot figure
|
| 20 |
+
array_columns: np.array
|
| 21 |
+
array of which columns to compare
|
| 22 |
+
e.g.: [[0,1], [1,2]] compares column 0 with 1 and 1 with 2
|
| 23 |
+
subplot: None or int
|
| 24 |
+
specifies if the figures has subplots and what subplot to add the notation to
|
| 25 |
+
_format: dict
|
| 26 |
+
format characteristics for the lines
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
-------
|
| 30 |
+
fig: figure
|
| 31 |
+
figure with the added notation
|
| 32 |
+
'''
|
| 33 |
+
# Specify in what y_range to plot for each pair of columns
|
| 34 |
+
y_range = np.zeros([len(array_columns), 2])
|
| 35 |
+
for i in range(len(array_columns)):
|
| 36 |
+
y_range[i] = [1.03+i*_format['interline'], 1.04+i*_format['interline']]
|
| 37 |
+
|
| 38 |
+
# Get values from figure
|
| 39 |
+
fig_dict = fig.to_dict()
|
| 40 |
+
|
| 41 |
+
# Get indices if working with subplots
|
| 42 |
+
if subplot:
|
| 43 |
+
if subplot == 1:
|
| 44 |
+
subplot_str = ''
|
| 45 |
+
else:
|
| 46 |
+
subplot_str =str(subplot)
|
| 47 |
+
indices = [] #Change the box index to the indices of the data for that subplot
|
| 48 |
+
for index, data in enumerate(fig_dict['data']):
|
| 49 |
+
#print(index, data['xaxis'], 'x' + subplot_str)
|
| 50 |
+
if data['xaxis'] == 'x' + subplot_str:
|
| 51 |
+
indices = np.append(indices, index)
|
| 52 |
+
indices = [int(i) for i in indices]
|
| 53 |
+
print((indices))
|
| 54 |
+
else:
|
| 55 |
+
subplot_str = ''
|
| 56 |
+
|
| 57 |
+
# Print the p-values
|
| 58 |
+
for index, column_pair in enumerate(array_columns):
|
| 59 |
+
if subplot:
|
| 60 |
+
data_pair = [indices[column_pair[0]], indices[column_pair[1]]]
|
| 61 |
+
else:
|
| 62 |
+
data_pair = column_pair
|
| 63 |
+
|
| 64 |
+
# Mare sure it is selecting the data and subplot you want
|
| 65 |
+
#print('0:', fig_dict['data'][data_pair[0]]['name'], fig_dict['data'][data_pair[0]]['xaxis'])
|
| 66 |
+
#print('1:', fig_dict['data'][data_pair[1]]['name'], fig_dict['data'][data_pair[1]]['xaxis'])
|
| 67 |
+
|
| 68 |
+
# Get the p-value
|
| 69 |
+
pvalue = stats.ttest_ind(
|
| 70 |
+
fig_dict['data'][data_pair[0]]['y'],
|
| 71 |
+
fig_dict['data'][data_pair[1]]['y'],
|
| 72 |
+
equal_var=False,
|
| 73 |
+
)[1]
|
| 74 |
+
if pvalue >= 0.05:
|
| 75 |
+
symbol = 'ns'
|
| 76 |
+
elif pvalue >= 0.01:
|
| 77 |
+
symbol = '*'
|
| 78 |
+
elif pvalue >= 0.001:
|
| 79 |
+
symbol = '**'
|
| 80 |
+
else:
|
| 81 |
+
symbol = '***'
|
| 82 |
+
# Vertical line
|
| 83 |
+
fig.add_shape(type="line",
|
| 84 |
+
xref="x"+subplot_str, yref="y"+subplot_str+" domain",
|
| 85 |
+
x0=column_pair[0], y0=y_range[index][0],
|
| 86 |
+
x1=column_pair[0], y1=y_range[index][1],
|
| 87 |
+
line=dict(color=_format['color'], width=1.5,)
|
| 88 |
+
)
|
| 89 |
+
# Horizontal line
|
| 90 |
+
fig.add_shape(type="line",
|
| 91 |
+
xref="x"+subplot_str, yref="y"+subplot_str+" domain",
|
| 92 |
+
x0=column_pair[0], y0=y_range[index][1],
|
| 93 |
+
x1=column_pair[1], y1=y_range[index][1],
|
| 94 |
+
line=dict(color=_format['color'], width=1.5,)
|
| 95 |
+
)
|
| 96 |
+
# Vertical line
|
| 97 |
+
fig.add_shape(type="line",
|
| 98 |
+
xref="x"+subplot_str, yref="y"+subplot_str+" domain",
|
| 99 |
+
x0=column_pair[1], y0=y_range[index][0],
|
| 100 |
+
x1=column_pair[1], y1=y_range[index][1],
|
| 101 |
+
line=dict(color=_format['color'], width=1.5,)
|
| 102 |
+
)
|
| 103 |
+
## add text at the correct x, y coordinates
|
| 104 |
+
## for bars, there is a direct mapping from the bar number to 0, 1, 2...
|
| 105 |
+
fig.add_annotation(dict(font=dict(color=_format['color'],size=14),
|
| 106 |
+
x=(column_pair[0] + column_pair[1])/2,
|
| 107 |
+
y=y_range[index][1]*_format['text_height'],
|
| 108 |
+
showarrow=False,
|
| 109 |
+
text=symbol,
|
| 110 |
+
textangle=0,
|
| 111 |
+
xref="x"+subplot_str,
|
| 112 |
+
yref="y"+subplot_str+" domain"
|
| 113 |
+
))
|
| 114 |
+
return fig
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def box_plot(df):
|
| 118 |
+
|
| 119 |
+
fig = px.box(df, x = 'Task_name', y='test_auroc', color="Model")
|
| 120 |
+
|
| 121 |
+
fig.update_layout(plot_bgcolor="white")
|
| 122 |
+
fig.update_xaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0)',mirror=False)
|
| 123 |
+
fig.update_yaxes(linecolor='rgba(0,0,0,0.25)', gridcolor='rgba(0,0,0,0.07)',mirror=False)
|
| 124 |
+
fig.update_layout(title={'text': "<b>ROC-AUC score distribution</b>",
|
| 125 |
+
'font':{'size':40},
|
| 126 |
+
'y': 0.96,
|
| 127 |
+
'x': 0.5,
|
| 128 |
+
'xanchor': 'center',
|
| 129 |
+
'yanchor': 'top'},
|
| 130 |
+
|
| 131 |
+
xaxis_title={'text': "Datasets",
|
| 132 |
+
'font':{'size':30}},
|
| 133 |
+
yaxis_title={'text': "ROC-AUC",
|
| 134 |
+
'font':{'size':30}},
|
| 135 |
+
|
| 136 |
+
font=dict(family="Calibri, monospace",
|
| 137 |
+
size=17
|
| 138 |
+
))
|
| 139 |
+
|
| 140 |
+
fig = add_p_value_annotation(fig, [[0,7], [3,7], [6,7]], subplot=1)
|
| 141 |
+
|
| 142 |
+
fig.write_image('../figures/box_plot_integration.png', width=1.5*1200, height=0.75*1200, scale=2)
|
| 143 |
+
fig.show()
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def go_box_plot(df, metric = ROC):
|
| 148 |
+
dataset_list = ['BIOSNAP', 'DAVIS', 'BindingDB']
|
| 149 |
+
model_list = ['LR', 'DNN', 'GNN-CPI', 'DeepDTI', 'DeepDTA', 'DeepConv-DTI', 'Moltrans', 'ours']
|
| 150 |
+
clr_list = ['red', 'orange', 'green', 'indianred', 'lightseagreen', 'goldenrod', 'magenta', 'blue']
|
| 151 |
+
|
| 152 |
+
if metric == ROC:
|
| 153 |
+
# fig_title = "<b>ROC-AUC score distribution</b>"
|
| 154 |
+
file_title = "boxplot_auroc.png"
|
| 155 |
+
select_metric = "test_auroc"
|
| 156 |
+
else:
|
| 157 |
+
# fig_title = "<b>PR-AUC score distribution</b>"
|
| 158 |
+
file_title = "boxplot_auprc.png"
|
| 159 |
+
select_metric = "test_auprc"
|
| 160 |
+
|
| 161 |
+
fig = make_subplots(rows=1, cols=3, subplot_titles=[c for c in dataset_list])
|
| 162 |
+
|
| 163 |
+
groups = df.groupby(df.Task_name)
|
| 164 |
+
Legand = True
|
| 165 |
+
|
| 166 |
+
for dataset_idx, dataset in enumerate(dataset_list):
|
| 167 |
+
df_modelgroup = groups.get_group(dataset)
|
| 168 |
+
model_groups = df_modelgroup.groupby(df_modelgroup.Model)
|
| 169 |
+
if dataset_idx != 0:
|
| 170 |
+
Legand = False
|
| 171 |
+
for model_idx, model in enumerate(model_list):
|
| 172 |
+
df_data = model_groups.get_group(model)
|
| 173 |
+
fig.append_trace(go.Box(y=df_data[select_metric],
|
| 174 |
+
name=model,
|
| 175 |
+
marker_color=clr_list[model_idx],
|
| 176 |
+
showlegend = Legand
|
| 177 |
+
),
|
| 178 |
+
row=1,
|
| 179 |
+
col=dataset_idx+1)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# fig.update_layout(title={'text': fig_title,
|
| 185 |
+
# 'font':{'size':25},
|
| 186 |
+
# 'y': 0.98,
|
| 187 |
+
# 'x': 0.46,
|
| 188 |
+
# 'xanchor': 'center',
|
| 189 |
+
# 'yanchor': 'top'})
|
| 190 |
+
|
| 191 |
+
# fig = add_p_value_annotation(fig, [[0,7], [3,7], [6,7]], subplot=1)
|
| 192 |
+
# fig = add_p_value_annotation(fig, [[0,7], [3,7], [6,7]], subplot=2)
|
| 193 |
+
# fig = add_p_value_annotation(fig, [[0,7], [3,7], [6,7]], subplot=3)
|
| 194 |
+
|
| 195 |
+
fig.write_image(f'../figures/{file_title}', width=1.5*1200, height=0.75*1200, scale=2)
|
| 196 |
+
fig.show()
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
if __name__ == '__main__':
|
| 200 |
+
df = pd.read_csv("../dataset/wandb_export_boxplotdata.csv")
|
| 201 |
+
box_plot(df)
|
util/data/bindingdb_kd.tab
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b72a38ae07a75d5d4c269d2776b6e62e0edde29ff7cf8a323158c08951f808d1
|
| 3 |
+
size 54432102
|
util/data/davis.tab
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d4c6809dcb7c5da2b91a32d594d6935b75484940bde4d18055eb5e1059262f4
|
| 3 |
+
size 21376712
|
util/emetric.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
def get_cindex(Y, P):
|
| 4 |
+
summ = 0
|
| 5 |
+
pair = 0
|
| 6 |
+
|
| 7 |
+
for i in range(1, len(Y)):
|
| 8 |
+
for j in range(0, i):
|
| 9 |
+
if i is not j:
|
| 10 |
+
if(Y[i] > Y[j]):
|
| 11 |
+
pair +=1
|
| 12 |
+
summ += 1* (P[i] > P[j]) + 0.5 * (P[i] == P[j])
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if pair is not 0:
|
| 16 |
+
return summ/pair
|
| 17 |
+
else:
|
| 18 |
+
return 0
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def r_squared_error(y_obs,y_pred):
|
| 22 |
+
y_obs = np.array(y_obs)
|
| 23 |
+
y_pred = np.array(y_pred)
|
| 24 |
+
y_obs_mean = [np.mean(y_obs) for y in y_obs]
|
| 25 |
+
y_pred_mean = [np.mean(y_pred) for y in y_pred]
|
| 26 |
+
|
| 27 |
+
mult = sum((y_pred - y_pred_mean) * (y_obs - y_obs_mean))
|
| 28 |
+
mult = mult * mult
|
| 29 |
+
|
| 30 |
+
y_obs_sq = sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean))
|
| 31 |
+
y_pred_sq = sum((y_pred - y_pred_mean) * (y_pred - y_pred_mean) )
|
| 32 |
+
|
| 33 |
+
return mult / float(y_obs_sq * y_pred_sq)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_k(y_obs,y_pred):
|
| 37 |
+
y_obs = np.array(y_obs)
|
| 38 |
+
y_pred = np.array(y_pred)
|
| 39 |
+
|
| 40 |
+
return sum(y_obs*y_pred) / float(sum(y_pred*y_pred))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def squared_error_zero(y_obs,y_pred):
|
| 44 |
+
k = get_k(y_obs,y_pred)
|
| 45 |
+
|
| 46 |
+
y_obs = np.array(y_obs)
|
| 47 |
+
y_pred = np.array(y_pred)
|
| 48 |
+
y_obs_mean = [np.mean(y_obs) for y in y_obs]
|
| 49 |
+
upp = sum((y_obs - (k*y_pred)) * (y_obs - (k* y_pred)))
|
| 50 |
+
down= sum((y_obs - y_obs_mean)*(y_obs - y_obs_mean))
|
| 51 |
+
|
| 52 |
+
return 1 - (upp / float(down))
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_rm2(ys_orig,ys_line):
|
| 56 |
+
r2 = r_squared_error(ys_orig, ys_line)
|
| 57 |
+
r02 = squared_error_zero(ys_orig, ys_line)
|
| 58 |
+
|
| 59 |
+
return r2 * (1 - np.sqrt(np.absolute((r2*r2)-(r02*r02))))
|
util/load_dataset.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tdc.multi_pred import DTI
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
if __name__ == '__main__':
|
| 7 |
+
bindingDB_data = DTI(name = 'BindingDB_Kd')
|
| 8 |
+
davis_data = DTI(name = 'DAVIS')
|
| 9 |
+
|
| 10 |
+
bindingDB_data.harmonize_affinities(mode = 'max_affinity')
|
| 11 |
+
|
| 12 |
+
bindingDB_data.convert_to_log(form = 'binding')
|
| 13 |
+
davis_data.convert_to_log(form = 'binding')
|
| 14 |
+
|
| 15 |
+
split_bindingDB = bindingDB_data.get_split()
|
| 16 |
+
split_davis = davis_data.get_split()
|
| 17 |
+
|
| 18 |
+
dataset_list = ["train", "valid", "test"]
|
| 19 |
+
for dataset_type in dataset_list:
|
| 20 |
+
df_bindingDB = pd.DataFrame(split_bindingDB[dataset_type])
|
| 21 |
+
df_davis = pd.DataFrame(split_davis[dataset_type])
|
| 22 |
+
|
| 23 |
+
df_bindingDB.to_csv(f"../dataset_kd/bindingDB_{dataset_type}.csv", index=False)
|
| 24 |
+
df_davis.to_csv(f"../dataset_kd/davis_{dataset_type}.csv", index=False)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
Y_bindingDB = np.array(df_bindingDB.Y)
|
| 28 |
+
Y_davis = np.array(df_davis.Y)
|
| 29 |
+
|
| 30 |
+
Y_davis_log = [np.log10(Y_davis)]
|
| 31 |
+
|
| 32 |
+
|
util/make_external_validation.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
smiles = pd.read_csv("../dataset/external_smiles.csv")
|
| 7 |
+
ass = pd.read_csv("../dataset/external_aas.csv")
|
| 8 |
+
|
| 9 |
+
smiles_data = list(np.array(smiles['smiles']))
|
| 10 |
+
smiles_label = list(np.array(smiles['label'].tolist()))
|
| 11 |
+
smiles_label = [x.split() for x in smiles_label]
|
| 12 |
+
|
| 13 |
+
ass_data = list(np.array(ass['aas']))
|
| 14 |
+
cyp_type = list(np.array(ass['CYP_type']))
|
| 15 |
+
|
| 16 |
+
external_dataset = []
|
| 17 |
+
for smiles_idx in range(0, len(smiles_data)):
|
| 18 |
+
for ass_idx in range(0, len(ass_data)):
|
| 19 |
+
|
| 20 |
+
external_data = [smiles_data[smiles_idx], ass_data[ass_idx], cyp_type[ass_idx]]
|
| 21 |
+
external_dataset.append(external_data)
|
| 22 |
+
|
| 23 |
+
df = pd.DataFrame(external_dataset, columns=['smiles', 'aas', 'CYP_type'])
|
| 24 |
+
df.to_csv('../dataset/external_dataset.csv', index=False)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
print(smiles['smiles'][0])
|
| 28 |
+
print(ass['CYP_type'][0])
|
util/utils.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json, copy
|
| 2 |
+
from easydict import EasyDict
|
| 3 |
+
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
class DictX(dict):
|
| 7 |
+
def __getattr__(self, key):
|
| 8 |
+
try:
|
| 9 |
+
return self[key]
|
| 10 |
+
except KeyError as k:
|
| 11 |
+
raise AttributeError(k)
|
| 12 |
+
|
| 13 |
+
def __setattr__(self, key, value):
|
| 14 |
+
self[key] = value
|
| 15 |
+
|
| 16 |
+
def __delattr__(self, key):
|
| 17 |
+
try:
|
| 18 |
+
del self[key]
|
| 19 |
+
except KeyError as k:
|
| 20 |
+
raise AttributeError(k)
|
| 21 |
+
|
| 22 |
+
def __repr__(self):
|
| 23 |
+
return '<DictX ' + dict.__repr__(self) + '>'
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_hparams(file_path):
|
| 27 |
+
hparams = EasyDict()
|
| 28 |
+
with open(file_path, 'r') as f:
|
| 29 |
+
hparams = json.load(f)
|
| 30 |
+
return hparams
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def deleteEncodingLayers(model, num_layers_to_keep): # must pass in the full bert model
|
| 34 |
+
oldModuleList = model.encoder.layer
|
| 35 |
+
newModuleList = nn.ModuleList()
|
| 36 |
+
|
| 37 |
+
# Now iterate over all layers, only keepign only the relevant layers.
|
| 38 |
+
for i in range(num_layers_to_keep):
|
| 39 |
+
newModuleList.append(oldModuleList[i])
|
| 40 |
+
|
| 41 |
+
# create a copy of the model, modify it with the new list, and return
|
| 42 |
+
copyOfModel = copy.deepcopy(model)
|
| 43 |
+
copyOfModel.encoder.layer = newModuleList
|
| 44 |
+
|
| 45 |
+
return copyOfModel
|