Spaces:
Runtime error
Runtime error
File size: 25,036 Bytes
9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f 5046e86 9a40e4f 5046e86 9a40e4f 922e0e8 9a40e4f 922e0e8 9a40e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import pybullet
from pybullet_utils.bullet_client import BulletClient
import pybullet_data
import threading
from time import sleep
import numpy as np
import os
from consts import BOUNDS, COLORS, PIXEL_SIZE, CORNER_POS
from shapely.geometry import box
# Gripper (Robotiq 2F85) code
class Robotiq2F85:
"""Gripper handling for Robotiq 2F85."""
def __init__(self, robot, tool, p):
self.robot = robot
self.tool = tool
self._p = p
pos = [0.1339999999999999, -0.49199999999872496, 0.5]
rot = self._p.getQuaternionFromEuler([np.pi, 0, np.pi])
urdf = 'robotiq_2f_85/robotiq_2f_85.urdf'
self.body = self._p.loadURDF(urdf, pos, rot)
self.n_joints = self._p.getNumJoints(self.body)
self.activated = False
# Connect gripper base to robot tool.
self._p.createConstraint(self.robot, tool, self.body, 0, jointType=self._p.JOINT_FIXED, jointAxis=[0, 0, 0], parentFramePosition=[0, 0, 0], childFramePosition=[0, 0, -0.07], childFrameOrientation=self._p.getQuaternionFromEuler([0, 0, np.pi / 2]))
# Set friction coefficients for gripper fingers.
for i in range(self._p.getNumJoints(self.body)):
self._p.changeDynamics(self.body, i, lateralFriction=10.0, spinningFriction=1.0, rollingFriction=1.0, frictionAnchor=True)
# Start thread to handle additional gripper constraints.
self.motor_joint = 1
self.constraints_thread = threading.Thread(target=self.step)
self.constraints_thread.daemon = True
self.constraints_thread.start()
# Control joint positions by enforcing hard contraints on gripper behavior.
# Set one joint as the open/close motor joint (other joints should mimic).
def step(self):
while True:
try:
currj = [self._p.getJointState(self.body, i)[0] for i in range(self.n_joints)]
indj = [6, 3, 8, 5, 10]
targj = [currj[1], -currj[1], -currj[1], currj[1], currj[1]]
self._p.setJointMotorControlArray(self.body, indj, self._p.POSITION_CONTROL, targj, positionGains=np.ones(5))
except:
return
sleep(0.001)
# Close gripper fingers.
def activate(self):
self._p.setJointMotorControl2(self.body, self.motor_joint, self._p.VELOCITY_CONTROL, targetVelocity=1, force=10)
self.activated = True
# Open gripper fingers.
def release(self):
self._p.setJointMotorControl2(self.body, self.motor_joint, self._p.VELOCITY_CONTROL, targetVelocity=-1, force=10)
self.activated = False
# If activated and object in gripper: check object contact.
# If activated and nothing in gripper: check gripper contact.
# If released: check proximity to surface (disabled).
def detect_contact(self):
obj, _, ray_frac = self.check_proximity()
if self.activated:
empty = self.grasp_width() < 0.01
cbody = self.body if empty else obj
if obj == self.body or obj == 0:
return False
return self.external_contact(cbody)
# else:
# return ray_frac < 0.14 or self.external_contact()
# Return if body is in contact with something other than gripper
def external_contact(self, body=None):
if body is None:
body = self.body
pts = self._p.getContactPoints(bodyA=body)
pts = [pt for pt in pts if pt[2] != self.body]
return len(pts) > 0 # pylint: disable=g-explicit-length-test
def check_grasp(self):
while self.moving():
sleep(0.001)
success = self.grasp_width() > 0.01
return success
def grasp_width(self):
lpad = np.array(self._p.getLinkState(self.body, 4)[0])
rpad = np.array(self._p.getLinkState(self.body, 9)[0])
dist = np.linalg.norm(lpad - rpad) - 0.047813
return dist
def check_proximity(self):
ee_pos = np.array(self._p.getLinkState(self.robot, self.tool)[0])
tool_pos = np.array(self._p.getLinkState(self.body, 0)[0])
vec = (tool_pos - ee_pos) / np.linalg.norm((tool_pos - ee_pos))
ee_targ = ee_pos + vec
ray_data = self._p.rayTest(ee_pos, ee_targ)[0]
obj, link, ray_frac = ray_data[0], ray_data[1], ray_data[2]
return obj, link, ray_frac
# Gym-style environment code
class PickPlaceEnv():
def __init__(self, render=False, high_res=False, high_frame_rate=False):
self.dt = 1/480
self.sim_step = 0
# Configure and start PyBullet
# self._p = pybullet.connect(pybullet.DIRECT)
self._p = BulletClient(connection_mode=pybullet.DIRECT)
self._p.configureDebugVisualizer(self._p.COV_ENABLE_GUI, 0)
self._p.setPhysicsEngineParameter(enableFileCaching=0)
assets_path = os.path.dirname(os.path.abspath(""))
self._p.setAdditionalSearchPath(assets_path)
self._p.setAdditionalSearchPath(pybullet_data.getDataPath())
self._p.setTimeStep(self.dt)
self.home_joints = (np.pi / 2, -np.pi / 2, np.pi / 2, -np.pi / 2, 3 * np.pi / 2, 0) # Joint angles: (J0, J1, J2, J3, J4, J5).
self.home_ee_euler = (np.pi, 0, np.pi) # (RX, RY, RZ) rotation in Euler angles.
self.ee_link_id = 9 # Link ID of UR5 end effector.
self.tip_link_id = 10 # Link ID of gripper finger tips.
self.gripper = None
self.render = render
self.high_res = high_res
self.high_frame_rate = high_frame_rate
def reset(self, object_list):
self._p.resetSimulation(self._p.RESET_USE_DEFORMABLE_WORLD)
self._p.setGravity(0, 0, -9.8)
self.cache_video = []
# Temporarily disable rendering to load URDFs faster.
self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 0)
# Add robot.
self._p.loadURDF("plane.urdf", [0, 0, -0.001])
self.robot_id = self._p.loadURDF("ur5e/ur5e.urdf", [0, 0, 0], flags=self._p.URDF_USE_MATERIAL_COLORS_FROM_MTL)
self.ghost_id = self._p.loadURDF("ur5e/ur5e.urdf", [0, 0, -10]) # For forward kinematics.
self.joint_ids = [self._p.getJointInfo(self.robot_id, i) for i in range(self._p.getNumJoints(self.robot_id))]
self.joint_ids = [j[0] for j in self.joint_ids if j[2] == self._p.JOINT_REVOLUTE]
# Move robot to home configuration.
for i in range(len(self.joint_ids)):
self._p.resetJointState(self.robot_id, self.joint_ids[i], self.home_joints[i])
# Add gripper.
if self.gripper is not None:
while self.gripper.constraints_thread.is_alive():
self.constraints_thread_active = False
self.gripper = Robotiq2F85(self.robot_id, self.ee_link_id, self._p)
self.gripper.release()
# Add workspace.
plane_shape = self._p.createCollisionShape(self._p.GEOM_BOX, halfExtents=[0.3, 0.3, 0.001])
plane_visual = self._p.createVisualShape(self._p.GEOM_BOX, halfExtents=[0.3, 0.3, 0.001])
plane_id = self._p.createMultiBody(0, plane_shape, plane_visual, basePosition=[0, -0.5, 0])
self._p.changeVisualShape(plane_id, -1, rgbaColor=[0.2, 0.2, 0.2, 1.0])
# Load objects according to config.
self.object_list = object_list
self.obj_name_to_id = {}
obj_xyz = np.zeros((0, 3))
for obj_name in object_list:
if ('block' in obj_name) or ('bowl' in obj_name):
# Get random position 15cm+ from other objects.
while True:
rand_x = np.random.uniform(BOUNDS[0, 0] + 0.1, BOUNDS[0, 1] - 0.1)
rand_y = np.random.uniform(BOUNDS[1, 0] + 0.1, BOUNDS[1, 1] - 0.1)
rand_xyz = np.float32([rand_x, rand_y, 0.03]).reshape(1, 3)
if len(obj_xyz) == 0:
obj_xyz = np.concatenate((obj_xyz, rand_xyz), axis=0)
break
else:
nn_dist = np.min(np.linalg.norm(obj_xyz - rand_xyz, axis=1)).squeeze()
if nn_dist > 0.15:
obj_xyz = np.concatenate((obj_xyz, rand_xyz), axis=0)
break
object_color = COLORS[obj_name.split(' ')[0]]
object_type = obj_name.split(' ')[1]
object_position = rand_xyz.squeeze()
if object_type == 'block':
object_shape = self._p.createCollisionShape(self._p.GEOM_BOX, halfExtents=[0.02, 0.02, 0.02])
object_visual = self._p.createVisualShape(self._p.GEOM_BOX, halfExtents=[0.02, 0.02, 0.02])
object_id = self._p.createMultiBody(0.01, object_shape, object_visual, basePosition=object_position)
elif object_type == 'bowl':
object_position[2] = 0
object_id = self._p.loadURDF("bowl/bowl.urdf", object_position, useFixedBase=1)
self._p.changeVisualShape(object_id, -1, rgbaColor=object_color)
self.obj_name_to_id[obj_name] = object_id
# Re-enable rendering.
self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 1)
for _ in range(200):
self._p.stepSimulation()
# record object positions at reset
self.init_pos = {name: self.get_obj_pos(name) for name in object_list}
return self.get_observation()
def servoj(self, joints):
"""Move to target joint positions with position control."""
self._p.setJointMotorControlArray(
bodyIndex=self.robot_id,
jointIndices=self.joint_ids,
controlMode=self._p.POSITION_CONTROL,
targetPositions=joints,
positionGains=[0.01]*6)
def movep(self, position):
"""Move to target end effector position."""
joints = self._p.calculateInverseKinematics(
bodyUniqueId=self.robot_id,
endEffectorLinkIndex=self.tip_link_id,
targetPosition=position,
targetOrientation=self._p.getQuaternionFromEuler(self.home_ee_euler),
maxNumIterations=100)
self.servoj(joints)
def get_ee_pos(self):
ee_xyz = np.float32(self._p.getLinkState(self.robot_id, self.tip_link_id)[0])
return ee_xyz
def step(self, action=None):
"""Do pick and place motion primitive."""
pick_pos, place_pos = action['pick'].copy(), action['place'].copy()
# Set fixed primitive z-heights.
hover_xyz = np.float32([pick_pos[0], pick_pos[1], 0.2])
if pick_pos.shape[-1] == 2:
pick_xyz = np.append(pick_pos, 0.025)
else:
pick_xyz = pick_pos
pick_xyz[2] = 0.025
if place_pos.shape[-1] == 2:
place_xyz = np.append(place_pos, 0.15)
else:
place_xyz = place_pos
place_xyz[2] = 0.15
# Move to object.
ee_xyz = self.get_ee_pos()
while np.linalg.norm(hover_xyz - ee_xyz) > 0.01:
self.movep(hover_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
while np.linalg.norm(pick_xyz - ee_xyz) > 0.01:
self.movep(pick_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
# Pick up object.
self.gripper.activate()
for _ in range(240):
self.step_sim_and_render()
while np.linalg.norm(hover_xyz - ee_xyz) > 0.01:
self.movep(hover_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
for _ in range(50):
self.step_sim_and_render()
# Move to place location.
while np.linalg.norm(place_xyz - ee_xyz) > 0.01:
self.movep(place_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
# Place down object.
while (not self.gripper.detect_contact()) and (place_xyz[2] > 0.03):
place_xyz[2] -= 0.001
self.movep(place_xyz)
for _ in range(3):
self.step_sim_and_render()
self.gripper.release()
for _ in range(240):
self.step_sim_and_render()
place_xyz[2] = 0.2
ee_xyz = self.get_ee_pos()
while np.linalg.norm(place_xyz - ee_xyz) > 0.01:
self.movep(place_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
place_xyz = np.float32([0, -0.5, 0.2])
while np.linalg.norm(place_xyz - ee_xyz) > 0.01:
self.movep(place_xyz)
self.step_sim_and_render()
ee_xyz = self.get_ee_pos()
observation = self.get_observation()
reward = self.get_reward()
done = False
info = {}
return observation, reward, done, info
def set_alpha_transparency(self, alpha: float) -> None:
for id in range(20):
visual_shape_data = self._p.getVisualShapeData(id)
for i in range(len(visual_shape_data)):
object_id, link_index, _, _, _, _, _, rgba_color = visual_shape_data[i]
rgba_color = list(rgba_color[0:3]) + [alpha]
self._p.changeVisualShape(
self.robot_id, linkIndex=i, rgbaColor=rgba_color)
self._p.changeVisualShape(
self.gripper.body, linkIndex=i, rgbaColor=rgba_color)
def step_sim_and_render(self):
self._p.stepSimulation()
self.sim_step += 1
interval = 40 if self.high_frame_rate else 60
# Render current image at 8 FPS.
if self.sim_step % interval == 0 and self.render:
self.cache_video.append(self.get_camera_image())
def get_camera_image(self):
if not self.high_res:
image_size = (240, 240)
intrinsics = (120., 0, 120., 0, 120., 120., 0, 0, 1)
else:
image_size=(360, 360)
intrinsics=(180., 0, 180., 0, 180., 180., 0, 0, 1)
color, _, _, _, _ = self.render_image(image_size, intrinsics)
return color
def get_reward(self):
return None
def get_observation(self):
observation = {}
# Render current image.
color, depth, position, orientation, intrinsics = self.render_image()
# Get heightmaps and colormaps.
points = self.get_pointcloud(depth, intrinsics)
position = np.float32(position).reshape(3, 1)
rotation = self._p.getMatrixFromQuaternion(orientation)
rotation = np.float32(rotation).reshape(3, 3)
transform = np.eye(4)
transform[:3, :] = np.hstack((rotation, position))
points = self.transform_pointcloud(points, transform)
heightmap, colormap, xyzmap = self.get_heightmap(points, color, BOUNDS, PIXEL_SIZE)
observation["image"] = colormap
observation["xyzmap"] = xyzmap
return observation
def render_image(self, image_size=(720, 720), intrinsics=(360., 0, 360., 0, 360., 360., 0, 0, 1)):
# Camera parameters.
position = (0, -0.85, 0.4)
orientation = (np.pi / 4 + np.pi / 48, np.pi, np.pi)
orientation = self._p.getQuaternionFromEuler(orientation)
zrange = (0.01, 10.)
noise=True
# OpenGL camera settings.
lookdir = np.float32([0, 0, 1]).reshape(3, 1)
updir = np.float32([0, -1, 0]).reshape(3, 1)
rotation = self._p.getMatrixFromQuaternion(orientation)
rotm = np.float32(rotation).reshape(3, 3)
lookdir = (rotm @ lookdir).reshape(-1)
updir = (rotm @ updir).reshape(-1)
lookat = position + lookdir
focal_len = intrinsics[0]
znear, zfar = (0.01, 10.)
viewm = self._p.computeViewMatrix(position, lookat, updir)
fovh = (image_size[0] / 2) / focal_len
fovh = 180 * np.arctan(fovh) * 2 / np.pi
# Notes: 1) FOV is vertical FOV 2) aspect must be float
aspect_ratio = image_size[1] / image_size[0]
projm = self._p.computeProjectionMatrixFOV(fovh, aspect_ratio, znear, zfar)
# Render with OpenGL camera settings.
_, _, color, depth, segm = self._p.getCameraImage(
width=image_size[1],
height=image_size[0],
viewMatrix=viewm,
projectionMatrix=projm,
shadow=1,
flags=self._p.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX,
renderer=self._p.ER_BULLET_HARDWARE_OPENGL)
# Get color image.
color_image_size = (image_size[0], image_size[1], 4)
color = np.array(color, dtype=np.uint8).reshape(color_image_size)
color = color[:, :, :3] # remove alpha channel
if noise:
color = np.int32(color)
color += np.int32(np.random.normal(0, 3, color.shape))
color = np.uint8(np.clip(color, 0, 255))
# Get depth image.
depth_image_size = (image_size[0], image_size[1])
zbuffer = np.float32(depth).reshape(depth_image_size)
depth = (zfar + znear - (2 * zbuffer - 1) * (zfar - znear))
depth = (2 * znear * zfar) / depth
if noise:
depth += np.random.normal(0, 0.003, depth.shape)
intrinsics = np.float32(intrinsics).reshape(3, 3)
return color, depth, position, orientation, intrinsics
def get_pointcloud(self, depth, intrinsics):
"""Get 3D pointcloud from perspective depth image.
Args:
depth: HxW float array of perspective depth in meters.
intrinsics: 3x3 float array of camera intrinsics matrix.
Returns:
points: HxWx3 float array of 3D points in camera coordinates.
"""
height, width = depth.shape
xlin = np.linspace(0, width - 1, width)
ylin = np.linspace(0, height - 1, height)
px, py = np.meshgrid(xlin, ylin)
px = (px - intrinsics[0, 2]) * (depth / intrinsics[0, 0])
py = (py - intrinsics[1, 2]) * (depth / intrinsics[1, 1])
points = np.float32([px, py, depth]).transpose(1, 2, 0)
return points
def transform_pointcloud(self, points, transform):
"""Apply rigid transformation to 3D pointcloud.
Args:
points: HxWx3 float array of 3D points in camera coordinates.
transform: 4x4 float array representing a rigid transformation matrix.
Returns:
points: HxWx3 float array of transformed 3D points.
"""
padding = ((0, 0), (0, 0), (0, 1))
homogen_points = np.pad(points.copy(), padding,
'constant', constant_values=1)
for i in range(3):
points[Ellipsis, i] = np.sum(transform[i, :] * homogen_points, axis=-1)
return points
def get_heightmap(self, points, colors, bounds, pixel_size):
"""Get top-down (z-axis) orthographic heightmap image from 3D pointcloud.
Args:
points: HxWx3 float array of 3D points in world coordinates.
colors: HxWx3 uint8 array of values in range 0-255 aligned with points.
bounds: 3x2 float array of values (rows: X,Y,Z; columns: min,max) defining
region in 3D space to generate heightmap in world coordinates.
pixel_size: float defining size of each pixel in meters.
Returns:
heightmap: HxW float array of height (from lower z-bound) in meters.
colormap: HxWx3 uint8 array of backprojected color aligned with heightmap.
xyzmap: HxWx3 float array of XYZ points in world coordinates.
"""
width = int(np.round((bounds[0, 1] - bounds[0, 0]) / pixel_size))
height = int(np.round((bounds[1, 1] - bounds[1, 0]) / pixel_size))
heightmap = np.zeros((height, width), dtype=np.float32)
colormap = np.zeros((height, width, colors.shape[-1]), dtype=np.uint8)
xyzmap = np.zeros((height, width, 3), dtype=np.float32)
# Filter out 3D points that are outside of the predefined bounds.
ix = (points[Ellipsis, 0] >= bounds[0, 0]) & (points[Ellipsis, 0] < bounds[0, 1])
iy = (points[Ellipsis, 1] >= bounds[1, 0]) & (points[Ellipsis, 1] < bounds[1, 1])
iz = (points[Ellipsis, 2] >= bounds[2, 0]) & (points[Ellipsis, 2] < bounds[2, 1])
valid = ix & iy & iz
points = points[valid]
colors = colors[valid]
# Sort 3D points by z-value, which works with array assignment to simulate
# z-buffering for rendering the heightmap image.
iz = np.argsort(points[:, -1])
points, colors = points[iz], colors[iz]
px = np.int32(np.floor((points[:, 0] - bounds[0, 0]) / pixel_size))
py = np.int32(np.floor((points[:, 1] - bounds[1, 0]) / pixel_size))
px = np.clip(px, 0, width - 1)
py = np.clip(py, 0, height - 1)
heightmap[py, px] = points[:, 2] - bounds[2, 0]
for c in range(colors.shape[-1]):
colormap[py, px, c] = colors[:, c]
xyzmap[py, px, c] = points[:, c]
colormap = colormap[::-1, :, :] # Flip up-down.
xv, yv = np.meshgrid(np.linspace(BOUNDS[0, 0], BOUNDS[0, 1], height),
np.linspace(BOUNDS[1, 0], BOUNDS[1, 1], width))
xyzmap[:, :, 0] = xv
xyzmap[:, :, 1] = yv
xyzmap = xyzmap[::-1, :, :] # Flip up-down.
heightmap = heightmap[::-1, :] # Flip up-down.
return heightmap, colormap, xyzmap
def on_top_of(self, obj_a, obj_b):
"""
check if obj_a is on top of obj_b
condition 1: l2 distance on xy plane is less than a threshold
condition 2: obj_a is higher than obj_b
"""
obj_a_pos = self.get_obj_pos(obj_a)
obj_b_pos = self.get_obj_pos(obj_b)
xy_dist = np.linalg.norm(obj_a_pos[:2] - obj_b_pos[:2])
if obj_b in CORNER_POS:
is_near = xy_dist < 0.06
return is_near
elif 'bowl' in obj_b:
is_near = xy_dist < 0.06
is_higher = obj_a_pos[2] > obj_b_pos[2]
return is_near and is_higher
else:
is_near = xy_dist < 0.04
is_higher = obj_a_pos[2] > obj_b_pos[2]
return is_near and is_higher
def get_obj_id(self, obj_name):
try:
if obj_name in self.obj_name_to_id:
obj_id = self.obj_name_to_id[obj_name]
else:
obj_name = obj_name.replace('circle', 'bowl').replace('square', 'block').replace('small', '').strip()
obj_id = self.obj_name_to_id[obj_name]
return obj_id
except:
raise Exception('Object name "{}" not found'.format(obj_name))
def get_obj_pos(self, obj_name):
obj_name = obj_name.replace('the', '').replace('_', ' ').strip()
if obj_name in CORNER_POS:
position = np.float32(np.array(CORNER_POS[obj_name]))
else:
pick_id = self.get_obj_id(obj_name)
pose = self._p.getBasePositionAndOrientation(pick_id)
position = np.float32(pose[0])
return position
def get_bounding_box(self, obj_name):
obj_id = self.get_obj_id(obj_name)
return self._p.getAABB(obj_id)
class LMP_wrapper():
def __init__(self, env, cfg, render=False):
self.env = env
self._cfg = cfg
self.object_names = list(self._cfg['env']['init_objs'])
self._min_xy = np.array(self._cfg['env']['coords']['bottom_left'])
self._max_xy = np.array(self._cfg['env']['coords']['top_right'])
self._range_xy = self._max_xy - self._min_xy
self._table_z = self._cfg['env']['coords']['table_z']
self.render = render
def is_obj_visible(self, obj_name):
return obj_name in self.object_names
def get_obj_names(self):
return self.object_names[::]
def denormalize_xy(self, pos_normalized):
return pos_normalized * self._range_xy + self._min_xy
def get_corner_positions(self):
unit_square = box(0, 0, 1, 1)
normalized_corners = np.array(list(unit_square.exterior.coords))[:4]
corners = np.array(([self.denormalize_xy(corner) for corner in normalized_corners]))
return corners
def get_side_positions(self):
side_xs = np.array([0, 0.5, 0.5, 1])
side_ys = np.array([0.5, 0, 1, 0.5])
normalized_side_positions = np.c_[side_xs, side_ys]
side_positions = np.array(([self.denormalize_xy(corner) for corner in normalized_side_positions]))
return side_positions
def get_obj_pos(self, obj_name):
# return the xy position of the object in robot base frame
return self.env.get_obj_pos(obj_name)[:2]
def get_obj_position_np(self, obj_name):
return self.get_pos(obj_name)
def get_bbox(self, obj_name):
# return the axis-aligned object bounding box in robot base frame (not in pixels)
# the format is (min_x, min_y, max_x, max_y)
bbox = self.env.get_bounding_box(obj_name)
return bbox
def get_color(self, obj_name):
for color, rgb in COLORS.items():
if color in obj_name:
return rgb
def pick_place(self, pick_pos, place_pos):
pick_pos_xyz = np.r_[pick_pos, [self._table_z]]
place_pos_xyz = np.r_[place_pos, [self._table_z]]
pass
def put_first_on_second(self, arg1, arg2):
# put the object with obj_name on top of target
# target can either be another object name, or it can be an x-y position in robot base frame
pick_pos = self.get_obj_pos(arg1) if isinstance(arg1, str) else arg1
place_pos = self.get_obj_pos(arg2) if isinstance(arg2, str) else arg2
self.env.step(action={'pick': pick_pos, 'place': place_pos})
def get_robot_pos(self):
# return robot end-effector xy position in robot base frame
return self.env.get_ee_pos()
def goto_pos(self, position_xy):
# move the robot end-effector to the desired xy position while maintaining same z
ee_xyz = self.env.get_ee_pos()
position_xyz = np.concatenate([position_xy, ee_xyz[-1]])
while np.linalg.norm(position_xyz - ee_xyz) > 0.01:
self.env.movep(position_xyz)
self.env.step_sim_and_render()
ee_xyz = self.env.get_ee_pos()
def follow_traj(self, traj):
for pos in traj:
self.goto_pos(pos)
def get_corner_positions(self):
normalized_corners = np.array([
[0, 1],
[1, 1],
[0, 0],
[1, 0]
])
return np.array(([self.denormalize_xy(corner) for corner in normalized_corners]))
def get_side_positions(self):
normalized_sides = np.array([
[0.5, 1],
[1, 0.5],
[0.5, 0],
[0, 0.5]
])
return np.array(([self.denormalize_xy(side) for side in normalized_sides]))
def get_corner_name(self, pos):
corner_positions = self.get_corner_positions()
corner_idx = np.argmin(np.linalg.norm(corner_positions - pos, axis=1))
return ['top left corner', 'top right corner', 'bottom left corner', 'botom right corner'][corner_idx]
def get_side_name(self, pos):
side_positions = self.get_side_positions()
side_idx = np.argmin(np.linalg.norm(side_positions - pos, axis=1))
return ['top side', 'right side', 'bottom side', 'left side'][side_idx] |