File size: 12,984 Bytes
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321f459
20b211e
 
 
 
 
 
 
 
 
aa5fd42
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5fd42
 
 
20b211e
aa5fd42
 
 
 
 
20b211e
 
 
 
aa5fd42
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5fd42
20b211e
 
 
aa5fd42
20b211e
 
aa5fd42
321f459
 
aa5fd42
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ae01e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5fd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5fd42
 
 
20b211e
 
 
aa5fd42
 
20b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#!/usr/bin/env python3

# Copyright 2023 Yi Xie
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import logging
import platform
import os
import shutil
import sys
import zipfile

parser = argparse.ArgumentParser(
    prog=os.path.basename(__file__),
    description='Convert a ML model to waifu2x app custom model',
)
parser.add_argument('filename')
required_args = parser.add_argument_group('required')
required_args.add_argument('--type', choices=['esrgan_old', 'esrgan_old_lite', 'real_esrgan', 'real_esrgan_compact', 'esrgan_plus'], required=True, help='Type of the model')
required_args.add_argument('--name', type=str, required=True, help='Name of the model')
required_args.add_argument('--scale', type=int, required=True, help='Scale factor of the model')
required_args.add_argument('--out-dir', type=str, required=True, help='Output directory')
optional_args = parser.add_argument_group('optional')
optional_args.add_argument('--monochrome', action='store_true', help='Input model is monochrome (single channel)')
optional_args.add_argument('--has-cuda', action='store_true', help='Input model contains CUDA object')
optional_args.add_argument('--num-features', type=int, help='Override number of features for (Real-)ESRGAN model')
optional_args.add_argument('--num-blocks', type=int, help='Override number of blocks for (Real-)ESRGAN model')
optional_args.add_argument('--num-convs', type=int, help='Override number of conv layers for Real-ESRGAN Compact model')
optional_args.add_argument('--shuffle-factor', type=int, help='Shuffle input channels in ESRGAN model')
optional_args.add_argument('--input-size', type=int, default=256, help='Input size (both width and height), default to 256')
optional_args.add_argument('--shrink-size', type=int, default=20, help='Shrink size (applied to all 4 sides on input), default to 20')
optional_args.add_argument('--description', type=str, required=False, help='Description of the model, supports Markdown')
optional_args.add_argument('--source', type=str, required=False, help='Source of the model, supports Markdown')
optional_args.add_argument('--author', type=str, required=False, help='Author of the model, supports Markdown')
optional_args.add_argument('--license', type=str, required=False, help='License of the model, supports Markdown')
optional_args.add_argument('--info-md', type=str, required=False, help='Use custom info.md instead of individual flags')
optional_args.add_argument('--no-delete-mlmodel', action='store_true', help='Don\'t delete the intermediate Core ML model file')
args = parser.parse_args()

logger = logging.getLogger('converter')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)

if args.input_size % 4 != 0:
    logger.fatal('Input size must be multiple of 4')
    sys.exit(-1)

if args.shrink_size < 0:
    logger.fatal('Shrink size must not be < 0')
    sys.exit(-1)

if args.input_size - 2 * args.shrink_size < 4:
    logger.fatal('Input size after shrinking is too small')
    sys.exit(-1)

os.makedirs(args.out_dir, exist_ok=True)

import coremltools as ct
import torch

torch_model = None
input_tensor = None
output_tensor = None

device = torch.device('cpu')
if platform.system() == 'Darwin' and torch.backends.mps.is_available():
    device = torch.device('mps')
    logger.info('Using torch device mps')
elif torch.cuda.is_available():
    device = torch.device('cuda')
    logger.info('Using torch device cuda')
else:
    logger.info('Using torch device cpu, please be patient')

logger.info('Creating model architecture')
in_channels = 3
out_channels = 3
model_scale = args.scale
if args.monochrome:
    in_channels = 1
    out_channels = 1
if args.shuffle_factor:
    in_channels *= args.shuffle_factor * args.shuffle_factor
    model_scale *= args.shuffle_factor

num_features = 64
num_blocks = 23
num_convs = 16
shuffle_factor = None

if args.type == 'esrgan_old_lite':
    num_features = 32
    num_blocks = 12

if args.num_features is not None:
    num_features = args.num_features
if args.num_blocks is not None:
    num_blocks = args.num_blocks
if args.num_convs is not None:
    num_convs = args.num_convs

if args.type == 'esrgan_old' or args.type == 'esrgan_old_lite':
    from esrgan_old import architecture
    torch_model = architecture.RRDB_Net(
        in_channels, out_channels, num_features, num_blocks, gc=32, upscale=model_scale, norm_type=None,
        act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
elif args.type == 'real_esrgan':
    from basicsr.archs.rrdbnet_arch import RRDBNet
    torch_model = RRDBNet(num_in_ch=in_channels, num_out_ch=out_channels, num_feat=num_features, num_block=num_blocks, num_grow_ch=32, scale=args.scale)
elif args.type == 'real_esrgan_compact':
    from basicsr.archs.srvgg_arch import SRVGGNetCompact
    torch_model = SRVGGNetCompact(num_in_ch=in_channels, num_out_ch=out_channels, num_feat=num_features, num_conv=num_convs, upscale=args.scale, act_type='prelu')
elif args.type == 'esrgan_plus':
    from esrgan_plus.codes.models.modules.architecture import RRDBNet
    torch_model = RRDBNet(in_nc=in_channels, out_nc=out_channels, nf=num_features, nb=num_blocks, gc=32, upscale=args.scale)
else:
    logger.fatal('Unknown model type: %s', args.type)
    sys.exit(-1)

logger.info('Loading weights')
loadnet = None
if args.has_cuda:
    loadnet = torch.load(args.filename, map_location=device)
else:
    loadnet = torch.load(args.filename)

if 'params_ema' in loadnet:
    loadnet = loadnet['params_ema']
elif 'params' in loadnet:
    loadnet = loadnet['params']

def mod2normal(state_dict):
    # this code is copied from https://github.com/victorca25/iNNfer
    if 'conv_first.weight' in state_dict:
        crt_net = {}
        items = list(state_dict)

        crt_net['model.0.weight'] = state_dict['conv_first.weight']
        crt_net['model.0.bias'] = state_dict['conv_first.bias']

        for k in items.copy():
            if 'RDB' in k:
                ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
                if '.weight' in k:
                    ori_k = ori_k.replace('.weight', '.0.weight')
                elif '.bias' in k:
                    ori_k = ori_k.replace('.bias', '.0.bias')
                crt_net[ori_k] = state_dict[k]
                items.remove(k)

        crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
        crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
        crt_net['model.3.weight'] = state_dict['upconv1.weight']
        crt_net['model.3.bias'] = state_dict['upconv1.bias']
        crt_net['model.6.weight'] = state_dict['upconv2.weight']
        crt_net['model.6.bias'] = state_dict['upconv2.bias']
        crt_net['model.8.weight'] = state_dict['HRconv.weight']
        crt_net['model.8.bias'] = state_dict['HRconv.bias']
        crt_net['model.10.weight'] = state_dict['conv_last.weight']
        crt_net['model.10.bias'] = state_dict['conv_last.bias']
        state_dict = crt_net
    return state_dict


try:
    torch_model.load_state_dict(loadnet, strict=True)
except Exception as e:
    if 'conv_first.weight' in loadnet:
        loadnet = mod2normal(loadnet)
        torch_model.load_state_dict(loadnet, strict=True)
    else:
        raise e

if args.monochrome:
    from torch import nn
    class MonochromeWrapper(nn.Module):
        def __init__(self, model: nn.Module):
            super(MonochromeWrapper, self).__init__()
            self.model = model
        def forward(self, x: torch.Tensor):
            x = torch.mean(x, dim=1, keepdim=True)
            x = self.model(x)
            x = x.repeat([1, 3, 1, 1])
            return x
    torch_model = MonochromeWrapper(torch_model)

if args.shuffle_factor:
    from torch import nn
    # Source: https://github.com/chaiNNer-org/spandrel/blob/cb2f03459819ce114c52e328b7ac9bb2812f205a/libs/spandrel/spandrel/architectures/__arch_helpers/padding.py
    def pad_to_multiple(
        tensor: torch.Tensor,
        multiple: int,
        *,
        mode: str,
        value: float = 0.0,
    ) -> torch.Tensor:
        _, _, h, w = tensor.size()
        pad_h = (multiple - h % multiple) % multiple
        pad_w = (multiple - w % multiple) % multiple
        if pad_h or pad_w:
            return nn.pad(tensor, (0, pad_w, 0, pad_h), mode, value)
        return tensor

    class ShuffleWrapper(nn.Module):
        def __init__(self, model: nn.Module):
            super(ShuffleWrapper, self).__init__()
            self.model = model
        def forward(self, x: torch.Tensor):
            _, _, h, w = x.size()
            x = pad_to_multiple(x, args.shuffle_factor, mode="reflect")
            x = torch.pixel_unshuffle(x, downscale_factor=args.shuffle_factor)
            x = self.model(x)
            return x[:, :, : h * model_scale, : w * model_scale]
    torch_model = ShuffleWrapper(torch_model)

logger.info('Tracing model, will take a long time and a lot of RAM')
torch_model.eval()
torch_model = torch_model.to(device)
example_input = torch.zeros(1, 3, 16, 16)
example_input = example_input.to(device)
traced_model = torch.jit.trace(torch_model, example_input)
out = traced_model(example_input)
logger.info('Successfully traced model')

input_size = example_input.shape[-1]
output_size = out.shape[-1]
if args.scale != output_size / input_size:
    logger.fatal('Expected output scale to be %d, but is actually %.2f', args.scale, output_size / input_size)
    sys.exit(-1)

logger.info('Converting to Core ML')
input_shape = [1, 3, args.input_size, args.input_size]
output_size = args.input_size * args.scale
output_shape = [1, 3, output_size, output_size]
minimum_deployment_target = None
if args.shuffle_factor:
    minimum_deployment_target = ct.target.iOS16
model = ct.convert(
    traced_model,
    convert_to="mlprogram",
    inputs=[ct.TensorType(shape=input_shape)],
    minimum_deployment_target=minimum_deployment_target
)
model_name = args.filename.split('/')[-1].split('.')[0]
mlmodel_file = args.out_dir + '/' + model_name + '.mlpackage'
model.save(mlmodel_file)

logger.info('Packaging model')
spec = model.get_spec()
input_name = spec.description.input[0].name
output_name = spec.description.output[0].name
logger.debug('Model input name: %s, size: %s', input_name, args.input_size)
output_size_shrinked = (args.input_size - 2 * args.shrink_size) * args.scale
logger.debug('Model output name: %s, size: %s, after shrinking: %s', output_name, output_size, output_size_shrinked)

manifest = {
    "version": 1,
    "name": args.name,
    "type": "coreml",
    "subModels": {
        "main": {
            "file": mlmodel_file,
            "inputName": input_name,
            "outputName": output_name
        }
    },
    "dataFormat": "nchw",
    "inputShape": input_shape,
    "shrinkSize": args.shrink_size,
    "scale": args.scale,
    "alphaMode": "sameAsMain"
}

info_md = '''
{}
===
Converted by [waifu2x-ios-model-converter](https://github.com/imxieyi/waifu2x-ios-model-converter).

'''.format(args.name)

if args.description is not None:
    info_md += '''
## Description
{}

'''.format(args.description)

if args.author is not None:
    info_md += '''
## Author
{}

'''.format(args.author)

if args.source is not None:
    info_md += '''
## Source
{}

'''.format(args.source)

if args.license is not None:
    info_md += '''
## License
{}

'''.format(args.license)

if len(info_md) > 1024 * 1024:
    logger.fatal('Model info.md too large. Try to reduce license file size, etc.')
    sys.exit(-1)

def add_folder_to_zip(folder, zipfile):
    for folderName, subfolders, filenames in os.walk(folder):
        for filename in filenames:
            filePath = os.path.join(folderName, filename)
            zipfile.write(filePath, filePath)

zip_file = args.out_dir + '/' + args.name + '.wifm'
with zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED) as modelzip:
    modelzip.writestr('manifest.json', json.dumps(manifest))
    modelzip.writestr('info.md', info_md)
    if os.path.isfile(mlmodel_file):
        modelzip.write(mlmodel_file)
    else:
        add_folder_to_zip(mlmodel_file, modelzip)

if not args.no_delete_mlmodel:
    if os.path.isfile(mlmodel_file):
        os.remove(mlmodel_file)
    else:
        shutil.rmtree(mlmodel_file)

logger.info('Successfully converted model: %s', zip_file)