File size: 12,984 Bytes
20b211e 321f459 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 321f459 aa5fd42 20b211e 18ae01e 20b211e aa5fd42 20b211e aa5fd42 20b211e aa5fd42 20b211e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
#!/usr/bin/env python3
# Copyright 2023 Yi Xie
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import platform
import os
import shutil
import sys
import zipfile
parser = argparse.ArgumentParser(
prog=os.path.basename(__file__),
description='Convert a ML model to waifu2x app custom model',
)
parser.add_argument('filename')
required_args = parser.add_argument_group('required')
required_args.add_argument('--type', choices=['esrgan_old', 'esrgan_old_lite', 'real_esrgan', 'real_esrgan_compact', 'esrgan_plus'], required=True, help='Type of the model')
required_args.add_argument('--name', type=str, required=True, help='Name of the model')
required_args.add_argument('--scale', type=int, required=True, help='Scale factor of the model')
required_args.add_argument('--out-dir', type=str, required=True, help='Output directory')
optional_args = parser.add_argument_group('optional')
optional_args.add_argument('--monochrome', action='store_true', help='Input model is monochrome (single channel)')
optional_args.add_argument('--has-cuda', action='store_true', help='Input model contains CUDA object')
optional_args.add_argument('--num-features', type=int, help='Override number of features for (Real-)ESRGAN model')
optional_args.add_argument('--num-blocks', type=int, help='Override number of blocks for (Real-)ESRGAN model')
optional_args.add_argument('--num-convs', type=int, help='Override number of conv layers for Real-ESRGAN Compact model')
optional_args.add_argument('--shuffle-factor', type=int, help='Shuffle input channels in ESRGAN model')
optional_args.add_argument('--input-size', type=int, default=256, help='Input size (both width and height), default to 256')
optional_args.add_argument('--shrink-size', type=int, default=20, help='Shrink size (applied to all 4 sides on input), default to 20')
optional_args.add_argument('--description', type=str, required=False, help='Description of the model, supports Markdown')
optional_args.add_argument('--source', type=str, required=False, help='Source of the model, supports Markdown')
optional_args.add_argument('--author', type=str, required=False, help='Author of the model, supports Markdown')
optional_args.add_argument('--license', type=str, required=False, help='License of the model, supports Markdown')
optional_args.add_argument('--info-md', type=str, required=False, help='Use custom info.md instead of individual flags')
optional_args.add_argument('--no-delete-mlmodel', action='store_true', help='Don\'t delete the intermediate Core ML model file')
args = parser.parse_args()
logger = logging.getLogger('converter')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
if args.input_size % 4 != 0:
logger.fatal('Input size must be multiple of 4')
sys.exit(-1)
if args.shrink_size < 0:
logger.fatal('Shrink size must not be < 0')
sys.exit(-1)
if args.input_size - 2 * args.shrink_size < 4:
logger.fatal('Input size after shrinking is too small')
sys.exit(-1)
os.makedirs(args.out_dir, exist_ok=True)
import coremltools as ct
import torch
torch_model = None
input_tensor = None
output_tensor = None
device = torch.device('cpu')
if platform.system() == 'Darwin' and torch.backends.mps.is_available():
device = torch.device('mps')
logger.info('Using torch device mps')
elif torch.cuda.is_available():
device = torch.device('cuda')
logger.info('Using torch device cuda')
else:
logger.info('Using torch device cpu, please be patient')
logger.info('Creating model architecture')
in_channels = 3
out_channels = 3
model_scale = args.scale
if args.monochrome:
in_channels = 1
out_channels = 1
if args.shuffle_factor:
in_channels *= args.shuffle_factor * args.shuffle_factor
model_scale *= args.shuffle_factor
num_features = 64
num_blocks = 23
num_convs = 16
shuffle_factor = None
if args.type == 'esrgan_old_lite':
num_features = 32
num_blocks = 12
if args.num_features is not None:
num_features = args.num_features
if args.num_blocks is not None:
num_blocks = args.num_blocks
if args.num_convs is not None:
num_convs = args.num_convs
if args.type == 'esrgan_old' or args.type == 'esrgan_old_lite':
from esrgan_old import architecture
torch_model = architecture.RRDB_Net(
in_channels, out_channels, num_features, num_blocks, gc=32, upscale=model_scale, norm_type=None,
act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
elif args.type == 'real_esrgan':
from basicsr.archs.rrdbnet_arch import RRDBNet
torch_model = RRDBNet(num_in_ch=in_channels, num_out_ch=out_channels, num_feat=num_features, num_block=num_blocks, num_grow_ch=32, scale=args.scale)
elif args.type == 'real_esrgan_compact':
from basicsr.archs.srvgg_arch import SRVGGNetCompact
torch_model = SRVGGNetCompact(num_in_ch=in_channels, num_out_ch=out_channels, num_feat=num_features, num_conv=num_convs, upscale=args.scale, act_type='prelu')
elif args.type == 'esrgan_plus':
from esrgan_plus.codes.models.modules.architecture import RRDBNet
torch_model = RRDBNet(in_nc=in_channels, out_nc=out_channels, nf=num_features, nb=num_blocks, gc=32, upscale=args.scale)
else:
logger.fatal('Unknown model type: %s', args.type)
sys.exit(-1)
logger.info('Loading weights')
loadnet = None
if args.has_cuda:
loadnet = torch.load(args.filename, map_location=device)
else:
loadnet = torch.load(args.filename)
if 'params_ema' in loadnet:
loadnet = loadnet['params_ema']
elif 'params' in loadnet:
loadnet = loadnet['params']
def mod2normal(state_dict):
# this code is copied from https://github.com/victorca25/iNNfer
if 'conv_first.weight' in state_dict:
crt_net = {}
items = list(state_dict)
crt_net['model.0.weight'] = state_dict['conv_first.weight']
crt_net['model.0.bias'] = state_dict['conv_first.bias']
for k in items.copy():
if 'RDB' in k:
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
if '.weight' in k:
ori_k = ori_k.replace('.weight', '.0.weight')
elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[ori_k] = state_dict[k]
items.remove(k)
crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
crt_net['model.3.weight'] = state_dict['upconv1.weight']
crt_net['model.3.bias'] = state_dict['upconv1.bias']
crt_net['model.6.weight'] = state_dict['upconv2.weight']
crt_net['model.6.bias'] = state_dict['upconv2.bias']
crt_net['model.8.weight'] = state_dict['HRconv.weight']
crt_net['model.8.bias'] = state_dict['HRconv.bias']
crt_net['model.10.weight'] = state_dict['conv_last.weight']
crt_net['model.10.bias'] = state_dict['conv_last.bias']
state_dict = crt_net
return state_dict
try:
torch_model.load_state_dict(loadnet, strict=True)
except Exception as e:
if 'conv_first.weight' in loadnet:
loadnet = mod2normal(loadnet)
torch_model.load_state_dict(loadnet, strict=True)
else:
raise e
if args.monochrome:
from torch import nn
class MonochromeWrapper(nn.Module):
def __init__(self, model: nn.Module):
super(MonochromeWrapper, self).__init__()
self.model = model
def forward(self, x: torch.Tensor):
x = torch.mean(x, dim=1, keepdim=True)
x = self.model(x)
x = x.repeat([1, 3, 1, 1])
return x
torch_model = MonochromeWrapper(torch_model)
if args.shuffle_factor:
from torch import nn
# Source: https://github.com/chaiNNer-org/spandrel/blob/cb2f03459819ce114c52e328b7ac9bb2812f205a/libs/spandrel/spandrel/architectures/__arch_helpers/padding.py
def pad_to_multiple(
tensor: torch.Tensor,
multiple: int,
*,
mode: str,
value: float = 0.0,
) -> torch.Tensor:
_, _, h, w = tensor.size()
pad_h = (multiple - h % multiple) % multiple
pad_w = (multiple - w % multiple) % multiple
if pad_h or pad_w:
return nn.pad(tensor, (0, pad_w, 0, pad_h), mode, value)
return tensor
class ShuffleWrapper(nn.Module):
def __init__(self, model: nn.Module):
super(ShuffleWrapper, self).__init__()
self.model = model
def forward(self, x: torch.Tensor):
_, _, h, w = x.size()
x = pad_to_multiple(x, args.shuffle_factor, mode="reflect")
x = torch.pixel_unshuffle(x, downscale_factor=args.shuffle_factor)
x = self.model(x)
return x[:, :, : h * model_scale, : w * model_scale]
torch_model = ShuffleWrapper(torch_model)
logger.info('Tracing model, will take a long time and a lot of RAM')
torch_model.eval()
torch_model = torch_model.to(device)
example_input = torch.zeros(1, 3, 16, 16)
example_input = example_input.to(device)
traced_model = torch.jit.trace(torch_model, example_input)
out = traced_model(example_input)
logger.info('Successfully traced model')
input_size = example_input.shape[-1]
output_size = out.shape[-1]
if args.scale != output_size / input_size:
logger.fatal('Expected output scale to be %d, but is actually %.2f', args.scale, output_size / input_size)
sys.exit(-1)
logger.info('Converting to Core ML')
input_shape = [1, 3, args.input_size, args.input_size]
output_size = args.input_size * args.scale
output_shape = [1, 3, output_size, output_size]
minimum_deployment_target = None
if args.shuffle_factor:
minimum_deployment_target = ct.target.iOS16
model = ct.convert(
traced_model,
convert_to="mlprogram",
inputs=[ct.TensorType(shape=input_shape)],
minimum_deployment_target=minimum_deployment_target
)
model_name = args.filename.split('/')[-1].split('.')[0]
mlmodel_file = args.out_dir + '/' + model_name + '.mlpackage'
model.save(mlmodel_file)
logger.info('Packaging model')
spec = model.get_spec()
input_name = spec.description.input[0].name
output_name = spec.description.output[0].name
logger.debug('Model input name: %s, size: %s', input_name, args.input_size)
output_size_shrinked = (args.input_size - 2 * args.shrink_size) * args.scale
logger.debug('Model output name: %s, size: %s, after shrinking: %s', output_name, output_size, output_size_shrinked)
manifest = {
"version": 1,
"name": args.name,
"type": "coreml",
"subModels": {
"main": {
"file": mlmodel_file,
"inputName": input_name,
"outputName": output_name
}
},
"dataFormat": "nchw",
"inputShape": input_shape,
"shrinkSize": args.shrink_size,
"scale": args.scale,
"alphaMode": "sameAsMain"
}
info_md = '''
{}
===
Converted by [waifu2x-ios-model-converter](https://github.com/imxieyi/waifu2x-ios-model-converter).
'''.format(args.name)
if args.description is not None:
info_md += '''
## Description
{}
'''.format(args.description)
if args.author is not None:
info_md += '''
## Author
{}
'''.format(args.author)
if args.source is not None:
info_md += '''
## Source
{}
'''.format(args.source)
if args.license is not None:
info_md += '''
## License
{}
'''.format(args.license)
if len(info_md) > 1024 * 1024:
logger.fatal('Model info.md too large. Try to reduce license file size, etc.')
sys.exit(-1)
def add_folder_to_zip(folder, zipfile):
for folderName, subfolders, filenames in os.walk(folder):
for filename in filenames:
filePath = os.path.join(folderName, filename)
zipfile.write(filePath, filePath)
zip_file = args.out_dir + '/' + args.name + '.wifm'
with zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED) as modelzip:
modelzip.writestr('manifest.json', json.dumps(manifest))
modelzip.writestr('info.md', info_md)
if os.path.isfile(mlmodel_file):
modelzip.write(mlmodel_file)
else:
add_folder_to_zip(mlmodel_file, modelzip)
if not args.no_delete_mlmodel:
if os.path.isfile(mlmodel_file):
os.remove(mlmodel_file)
else:
shutil.rmtree(mlmodel_file)
logger.info('Successfully converted model: %s', zip_file)
|