Yi Xie
commited on
Commit
·
20b211e
1
Parent(s):
0c3b654
App code
Browse files- LICENSE +202 -0
- app.py +116 -0
- converter.py +265 -0
- esrgan_old/LICENSE +201 -0
- esrgan_old/README.md +174 -0
- esrgan_old/architecture.py +38 -0
- esrgan_old/block.py +261 -0
- esrgan_old/net_interp.py +21 -0
- known_models.yaml +168 -0
- requirements.txt +6 -0
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright 2023 Yi Xie
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
import glob
|
19 |
+
import hashlib
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import shutil
|
23 |
+
import subprocess
|
24 |
+
import sys
|
25 |
+
import yaml
|
26 |
+
|
27 |
+
OUT_DIR = '/tmp'
|
28 |
+
|
29 |
+
logging.basicConfig(level=logging.INFO)
|
30 |
+
logger = logging.getLogger()
|
31 |
+
|
32 |
+
known_models_yaml = None
|
33 |
+
with open('known_models.yaml', 'r') as f:
|
34 |
+
known_models_yaml = yaml.load(f.read(), Loader=yaml.Loader)
|
35 |
+
|
36 |
+
def convert(input_model):
|
37 |
+
last_outputs = glob.glob('*.wifm', root_dir=OUT_DIR) + glob.glob('*.mlpackage', root_dir=OUT_DIR)
|
38 |
+
for output in last_outputs:
|
39 |
+
try:
|
40 |
+
if os.path.isfile(OUT_DIR + '/' + output):
|
41 |
+
os.remove(OUT_DIR + '/' + output)
|
42 |
+
else:
|
43 |
+
shutil.rmtree(OUT_DIR + '/' + output)
|
44 |
+
except Exception as e:
|
45 |
+
logger.error('Failed to remove last output file: ' + str(e))
|
46 |
+
|
47 |
+
file = input_model.name
|
48 |
+
if not file.endswith('.pth'):
|
49 |
+
raise gr.Error('Uploaded file is not PyTorch weights.')
|
50 |
+
digest = None
|
51 |
+
with open(file, 'rb') as f:
|
52 |
+
digest = hashlib.sha256(f.read()).hexdigest()
|
53 |
+
|
54 |
+
for model in known_models_yaml['models']:
|
55 |
+
if digest != model['sha256']:
|
56 |
+
continue
|
57 |
+
name = model['name']
|
58 |
+
out_file = OUT_DIR + '/' + name + '.wifm'
|
59 |
+
logger.info('Converting model: %s', name)
|
60 |
+
command = [
|
61 |
+
'python', 'converter.py',
|
62 |
+
'--type', model['type'],
|
63 |
+
'--name', name,
|
64 |
+
'--scale', str(model['scale']),
|
65 |
+
'--out-dir', OUT_DIR,
|
66 |
+
'--description', model['description'],
|
67 |
+
'--source', model['source'],
|
68 |
+
'--author', model['author'],
|
69 |
+
'--license', model['license']
|
70 |
+
]
|
71 |
+
if 'cuda' in model and model['cuda']:
|
72 |
+
command += ['--has-cuda']
|
73 |
+
if 'monochrome' in model and model['monochrome']:
|
74 |
+
command += ['--monochrome']
|
75 |
+
if 'features' in model:
|
76 |
+
command += ['--num-features', str(model['features'])]
|
77 |
+
if 'blocks' in model:
|
78 |
+
command += ['--num-blocks', str(model['blocks'])]
|
79 |
+
if 'convs' in model:
|
80 |
+
command += ['--num-convs', str(model['convs'])]
|
81 |
+
command += [file]
|
82 |
+
logger.debug('Command: %s', command)
|
83 |
+
process = subprocess.Popen(command, stdout=subprocess.PIPE)
|
84 |
+
for c in iter(lambda: process.stdout.read(1), b''):
|
85 |
+
sys.stdout.buffer.write(c)
|
86 |
+
sys.stdout.flush()
|
87 |
+
process.communicate()
|
88 |
+
if process.returncode != 0:
|
89 |
+
raise gr.Error('converter.py returned non-zero exit code ' + str(process.returncode))
|
90 |
+
if not os.path.exists(out_file):
|
91 |
+
raise gr.Error('Unknown error')
|
92 |
+
return out_file
|
93 |
+
|
94 |
+
raise gr.Error('Unknown model. Please create an issue in https://github.com/imxieyi/waifu2x-ios-model-converter if it has a supported architecture.')
|
95 |
+
|
96 |
+
models_string = ''
|
97 |
+
for model in known_models_yaml['models']:
|
98 |
+
models_string += '- ' + model['file'].split('/')[-1] + '\n'
|
99 |
+
|
100 |
+
iface = gr.Interface(
|
101 |
+
fn=convert,
|
102 |
+
inputs='file',
|
103 |
+
outputs='file',
|
104 |
+
title='Web waifu2x-ios Model Converter',
|
105 |
+
description='''
|
106 |
+
Please upload the `.pth` model file on the left. After submitting please wait until the output `.wifm` model file appears on the right. Then simply click `Download` to download converted custom model.
|
107 |
+
''',
|
108 |
+
article='''
|
109 |
+
Supported models (from [upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)):
|
110 |
+
{}
|
111 |
+
|
112 |
+
Project: https://github.com/imxieyi/waifu2x-ios-model-converter
|
113 |
+
Report issues: https://github.com/imxieyi/waifu2x-ios-model-converter/issues
|
114 |
+
'''.format(models_string),
|
115 |
+
)
|
116 |
+
iface.launch()
|
converter.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright 2023 Yi Xie
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import json
|
18 |
+
import logging
|
19 |
+
import platform
|
20 |
+
import os
|
21 |
+
import shutil
|
22 |
+
import sys
|
23 |
+
import zipfile
|
24 |
+
|
25 |
+
parser = argparse.ArgumentParser(
|
26 |
+
prog=os.path.basename(__file__),
|
27 |
+
description='Convert a ML model to waifu2x app custom model',
|
28 |
+
)
|
29 |
+
parser.add_argument('filename')
|
30 |
+
required_args = parser.add_argument_group('required')
|
31 |
+
required_args.add_argument('--type', choices=['esrgan_old', 'esrgan_old_lite', 'real_esrgan', 'real_esrgan_compact'], required=True, help='Type of the model')
|
32 |
+
required_args.add_argument('--name', type=str, required=True, help='Name of the model')
|
33 |
+
required_args.add_argument('--scale', type=int, required=True, help='Scale factor of the model')
|
34 |
+
required_args.add_argument('--out-dir', type=str, required=True, help='Output directory')
|
35 |
+
optional_args = parser.add_argument_group('optional')
|
36 |
+
optional_args.add_argument('--monochrome', action='store_true', help='Input model is monochrome (single channel)')
|
37 |
+
optional_args.add_argument('--has-cuda', action='store_true', help='Input model contains CUDA object')
|
38 |
+
optional_args.add_argument('--num-features', type=int, help='Override number of features for (Real-)ESRGAN model')
|
39 |
+
optional_args.add_argument('--num-blocks', type=int, help='Override number of blocks for (Real-)ESRGAN model')
|
40 |
+
optional_args.add_argument('--num-convs', type=int, help='Override number of conv layers for Real-ESRGAN Compact model')
|
41 |
+
optional_args.add_argument('--input-size', type=int, default=256, help='Input size (both width and height), default to 256')
|
42 |
+
optional_args.add_argument('--shrink-size', type=int, default=20, help='Shrink size (applied to all 4 sides on input), default to 20')
|
43 |
+
optional_args.add_argument('--description', type=str, required=False, help='Description of the model, supports Markdown')
|
44 |
+
optional_args.add_argument('--source', type=str, required=False, help='Source of the model, supports Markdown')
|
45 |
+
optional_args.add_argument('--author', type=str, required=False, help='Author of the model, supports Markdown')
|
46 |
+
optional_args.add_argument('--license', type=str, required=False, help='License of the model, supports Markdown')
|
47 |
+
optional_args.add_argument('--info-md', type=str, required=False, help='Use custom info.md instead of individual flags')
|
48 |
+
optional_args.add_argument('--no-delete-mlmodel', action='store_true', help='Don\'t delete the intermediate Core ML model file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
|
51 |
+
logger = logging.getLogger('converter')
|
52 |
+
logger.setLevel(logging.INFO)
|
53 |
+
handler = logging.StreamHandler(sys.stdout)
|
54 |
+
handler.setLevel(logging.INFO)
|
55 |
+
formatter = logging.Formatter('%(levelname)s - %(message)s')
|
56 |
+
handler.setFormatter(formatter)
|
57 |
+
logger.addHandler(handler)
|
58 |
+
|
59 |
+
if args.input_size % 4 != 0:
|
60 |
+
logger.fatal('Input size must be multiple of 4')
|
61 |
+
sys.exit(-1)
|
62 |
+
|
63 |
+
if args.shrink_size < 0:
|
64 |
+
logger.fatal('Shrink size must not be < 0')
|
65 |
+
sys.exit(-1)
|
66 |
+
|
67 |
+
if args.input_size - 2 * args.shrink_size < 4:
|
68 |
+
logger.fatal('Input size after shrinking is too small')
|
69 |
+
sys.exit(-1)
|
70 |
+
|
71 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
72 |
+
|
73 |
+
import coremltools as ct
|
74 |
+
import torch
|
75 |
+
|
76 |
+
torch_model = None
|
77 |
+
input_tensor = None
|
78 |
+
output_tensor = None
|
79 |
+
|
80 |
+
device = torch.device('cpu')
|
81 |
+
if platform.system() == 'Darwin' and torch.backends.mps.is_available():
|
82 |
+
device = torch.device('mps')
|
83 |
+
logger.info('Using torch device mps')
|
84 |
+
elif torch.cuda.is_available():
|
85 |
+
device = torch.device('cuda')
|
86 |
+
logger.info('Using torch device cuda')
|
87 |
+
else:
|
88 |
+
logger.info('Using torch device cpu, please be patient')
|
89 |
+
|
90 |
+
logger.info('Creating model architecture')
|
91 |
+
channels = 3
|
92 |
+
if args.monochrome:
|
93 |
+
channels = 1
|
94 |
+
|
95 |
+
num_features = 64
|
96 |
+
num_blocks = 23
|
97 |
+
num_convs = 16
|
98 |
+
|
99 |
+
if args.type == 'esrgan_old_lite':
|
100 |
+
num_features = 32
|
101 |
+
num_blocks = 12
|
102 |
+
|
103 |
+
if args.num_features is not None:
|
104 |
+
num_features = args.num_features
|
105 |
+
if args.num_blocks is not None:
|
106 |
+
num_blocks = args.num_blocks
|
107 |
+
if args.num_convs is not None:
|
108 |
+
num_convs = args.num_convs
|
109 |
+
|
110 |
+
if args.type == 'esrgan_old' or args.type == 'esrgan_old_lite':
|
111 |
+
from esrgan_old import architecture
|
112 |
+
torch_model = architecture.RRDB_Net(
|
113 |
+
channels, channels, num_features, num_blocks, gc=32, upscale=args.scale, norm_type=None,
|
114 |
+
act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
|
115 |
+
elif args.type == 'real_esrgan':
|
116 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
117 |
+
torch_model = RRDBNet(num_in_ch=channels, num_out_ch=channels, num_feat=num_features, num_block=num_blocks, num_grow_ch=32, scale=args.scale)
|
118 |
+
elif args.type == 'real_esrgan_compact':
|
119 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
120 |
+
torch_model = SRVGGNetCompact(num_in_ch=channels, num_out_ch=channels, num_feat=num_features, num_conv=num_convs, upscale=args.scale, act_type='prelu')
|
121 |
+
else:
|
122 |
+
logger.fatal('Unknown model type: %s', args.type)
|
123 |
+
sys.exit(-1)
|
124 |
+
|
125 |
+
logger.info('Loading weights')
|
126 |
+
loadnet = None
|
127 |
+
if args.has_cuda:
|
128 |
+
loadnet = torch.load(args.filename, map_location=device)
|
129 |
+
else:
|
130 |
+
loadnet = torch.load(args.filename)
|
131 |
+
|
132 |
+
if 'params_ema' in loadnet:
|
133 |
+
loadnet = loadnet['params_ema']
|
134 |
+
elif 'params' in loadnet:
|
135 |
+
loadnet = loadnet['params']
|
136 |
+
torch_model.load_state_dict(loadnet, strict=True)
|
137 |
+
|
138 |
+
if args.monochrome:
|
139 |
+
from torch import nn
|
140 |
+
class MonochromeWrapper(nn.Module):
|
141 |
+
def __init__(self, model: nn.Module):
|
142 |
+
super(MonochromeWrapper, self).__init__()
|
143 |
+
self.model = model
|
144 |
+
def forward(self, x: torch.Tensor):
|
145 |
+
x = torch.mean(x, dim=1, keepdim=True)
|
146 |
+
x = self.model(x)
|
147 |
+
x = x.repeat([1, 3, 1, 1])
|
148 |
+
return x
|
149 |
+
torch_model = MonochromeWrapper(torch_model)
|
150 |
+
|
151 |
+
logger.info('Tracing model, will take a long time and a lot of RAM')
|
152 |
+
torch_model.eval()
|
153 |
+
torch_model = torch_model.to(device)
|
154 |
+
example_input = torch.zeros(1, 3, 16, 16)
|
155 |
+
example_input = example_input.to(device)
|
156 |
+
traced_model = torch.jit.trace(torch_model, example_input)
|
157 |
+
out = traced_model(example_input)
|
158 |
+
logger.info('Successfully traced model')
|
159 |
+
|
160 |
+
input_size = example_input.shape[-1]
|
161 |
+
output_size = out.shape[-1]
|
162 |
+
if args.scale != output_size / input_size:
|
163 |
+
logger.fatal('Expected output scale to be %d, but is actually %.2f', args.scale, output_size / input_size)
|
164 |
+
sys.exit(-1)
|
165 |
+
|
166 |
+
logger.info('Converting to Core ML')
|
167 |
+
input_shape = [1, 3, args.input_size, args.input_size]
|
168 |
+
output_size = args.input_size * args.scale
|
169 |
+
output_shape = [1, 3, output_size, output_size]
|
170 |
+
model = ct.convert(
|
171 |
+
traced_model,
|
172 |
+
convert_to="mlprogram",
|
173 |
+
inputs=[ct.TensorType(shape=input_shape)]
|
174 |
+
)
|
175 |
+
model_name = args.filename.split('/')[-1].split('.')[0]
|
176 |
+
mlmodel_file = args.out_dir + '/' + model_name + '.mlpackage'
|
177 |
+
model.save(mlmodel_file)
|
178 |
+
|
179 |
+
logger.info('Packaging model')
|
180 |
+
spec = model.get_spec()
|
181 |
+
input_name = spec.description.input[0].name
|
182 |
+
output_name = spec.description.output[0].name
|
183 |
+
logger.debug('Model input name: %s, size: %s', input_name, args.input_size)
|
184 |
+
output_size_shrinked = (args.input_size - 2 * args.shrink_size) * args.scale
|
185 |
+
logger.debug('Model output name: %s, size: %s, after shrinking: %s', output_name, output_size, output_size_shrinked)
|
186 |
+
|
187 |
+
manifest = {
|
188 |
+
"version": 1,
|
189 |
+
"name": args.name,
|
190 |
+
"type": "coreml",
|
191 |
+
"subModels": {
|
192 |
+
"main": {
|
193 |
+
"file": mlmodel_file,
|
194 |
+
"inputName": input_name,
|
195 |
+
"outputName": output_name
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"dataFormat": "nchw",
|
199 |
+
"inputShape": input_shape,
|
200 |
+
"shrinkSize": args.shrink_size,
|
201 |
+
"scale": args.scale,
|
202 |
+
"alphaMode": "sameAsMain"
|
203 |
+
}
|
204 |
+
|
205 |
+
info_md = '''
|
206 |
+
{}
|
207 |
+
===
|
208 |
+
Converted by [waifu2x-ios-model-converter](https://github.com/imxieyi/waifu2x-ios-model-converter).
|
209 |
+
|
210 |
+
'''.format(args.name)
|
211 |
+
|
212 |
+
if args.description is not None:
|
213 |
+
info_md += '''
|
214 |
+
## Description
|
215 |
+
{}
|
216 |
+
|
217 |
+
'''.format(args.description)
|
218 |
+
|
219 |
+
if args.author is not None:
|
220 |
+
info_md += '''
|
221 |
+
## Author
|
222 |
+
{}
|
223 |
+
|
224 |
+
'''.format(args.author)
|
225 |
+
|
226 |
+
if args.source is not None:
|
227 |
+
info_md += '''
|
228 |
+
## Source
|
229 |
+
{}
|
230 |
+
|
231 |
+
'''.format(args.source)
|
232 |
+
|
233 |
+
if args.license is not None:
|
234 |
+
info_md += '''
|
235 |
+
## License
|
236 |
+
{}
|
237 |
+
|
238 |
+
'''.format(args.license)
|
239 |
+
|
240 |
+
if len(info_md) > 1024 * 1024:
|
241 |
+
logger.fatal('Model info.md too large. Try to reduce license file size, etc.')
|
242 |
+
sys.exit(-1)
|
243 |
+
|
244 |
+
def add_folder_to_zip(folder, zipfile):
|
245 |
+
for folderName, subfolders, filenames in os.walk(folder):
|
246 |
+
for filename in filenames:
|
247 |
+
filePath = os.path.join(folderName, filename)
|
248 |
+
zipfile.write(filePath, filePath)
|
249 |
+
|
250 |
+
zip_file = args.out_dir + '/' + args.name + '.wifm'
|
251 |
+
with zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED) as modelzip:
|
252 |
+
modelzip.writestr('manifest.json', json.dumps(manifest))
|
253 |
+
modelzip.writestr('info.md', info_md)
|
254 |
+
if os.path.isfile(mlmodel_file):
|
255 |
+
modelzip.write(mlmodel_file)
|
256 |
+
else:
|
257 |
+
add_folder_to_zip(mlmodel_file, modelzip)
|
258 |
+
|
259 |
+
if not args.no_delete_mlmodel:
|
260 |
+
if os.path.isfile(mlmodel_file):
|
261 |
+
os.remove(mlmodel_file)
|
262 |
+
else:
|
263 |
+
shutil.rmtree(mlmodel_file)
|
264 |
+
|
265 |
+
logger.info('Successfully converted model: %s', zip_file)
|
esrgan_old/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
esrgan_old/README.md
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ESRGAN (Enhanced SRGAN) [[Paper]](https://arxiv.org/abs/1809.00219) [[BasicSR]](https://github.com/xinntao/BasicSR)
|
2 |
+
## :smiley: Training codes are in [BasicSR](https://github.com/xinntao/BasicSR) repo.
|
3 |
+
### Enhanced Super-Resolution Generative Adversarial Networks
|
4 |
+
By Xintao Wang, [Ke Yu](https://yuke93.github.io/), Shixiang Wu, [Jinjin Gu](http://www.jasongt.com/), Yihao Liu, [Chao Dong](https://scholar.google.com.hk/citations?user=OSDCB0UAAAAJ&hl=en), [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao/), [Chen Change Loy](http://personal.ie.cuhk.edu.hk/~ccloy/)
|
5 |
+
|
6 |
+
This repo only provides simple testing codes, pretrained models and the network strategy demo.
|
7 |
+
|
8 |
+
### **For full training and testing codes, please refer to [BasicSR](https://github.com/xinntao/BasicSR).**
|
9 |
+
|
10 |
+
We won the first place in [PIRM2018-SR competition](https://www.pirm2018.org/PIRM-SR.html) (region 3) and got the best perceptual index.
|
11 |
+
The paper is accepted to [ECCV2018 PIRM Workshop](https://pirm2018.org/).
|
12 |
+
|
13 |
+
:triangular_flag_on_post: Add [Frequently Asked Questions](https://github.com/xinntao/ESRGAN/blob/master/QA.md).
|
14 |
+
|
15 |
+
> For instance,
|
16 |
+
> 1. How to reproduce your results in the PIRM18-SR Challenge (with low perceptual index)?
|
17 |
+
> 2. How do you get the perceptual index in your ESRGAN paper?
|
18 |
+
|
19 |
+
#### BibTeX
|
20 |
+
<!--
|
21 |
+
@article{wang2018esrgan,
|
22 |
+
author={Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Loy, Chen Change and Qiao, Yu and Tang, Xiaoou},
|
23 |
+
title={ESRGAN: Enhanced super-resolution generative adversarial networks},
|
24 |
+
journal={arXiv preprint arXiv:1809.00219},
|
25 |
+
year={2018}
|
26 |
+
}
|
27 |
+
-->
|
28 |
+
@InProceedings{wang2018esrgan,
|
29 |
+
author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
|
30 |
+
title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
|
31 |
+
booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
|
32 |
+
month = {September},
|
33 |
+
year = {2018}
|
34 |
+
}
|
35 |
+
|
36 |
+
<p align="center">
|
37 |
+
<img src="figures/baboon.jpg">
|
38 |
+
</p>
|
39 |
+
|
40 |
+
The **RRDB_PSNR** PSNR_oriented model trained with DF2K dataset (a merged dataset with [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) and [Flickr2K](http://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (proposed in [EDSR](https://github.com/LimBee/NTIRE2017))) is also able to achive high PSNR performance.
|
41 |
+
|
42 |
+
| <sub>Method</sub> | <sub>Training dataset</sub> | <sub>Set5</sub> | <sub>Set14</sub> | <sub>BSD100</sub> | <sub>Urban100</sub> | <sub>Manga109</sub> |
|
43 |
+
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
44 |
+
| <sub>[SRCNN](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html)</sub>| <sub>291</sub>| <sub>30.48/0.8628</sub> |<sub>27.50/0.7513</sub>|<sub>26.90/0.7101</sub>|<sub>24.52/0.7221</sub>|<sub>27.58/0.8555</sub>|
|
45 |
+
| <sub>[EDSR](https://github.com/thstkdgus35/EDSR-PyTorch)</sub> | <sub>DIV2K</sub> | <sub>32.46/0.8968</sub> | <sub>28.80/0.7876</sub> | <sub>27.71/0.7420</sub> | <sub>26.64/0.8033</sub> | <sub>31.02/0.9148</sub> |
|
46 |
+
| <sub>[RCAN](https://github.com/yulunzhang/RCAN)</sub> | <sub>DIV2K</sub> | <sub>32.63/0.9002</sub> | <sub>28.87/0.7889</sub> | <sub>27.77/0.7436</sub> | <sub>26.82/ 0.8087</sub>| <sub>31.22/ 0.9173</sub>|
|
47 |
+
|<sub>RRDB(ours)</sub>| <sub>DF2K</sub>| <sub>**32.73/0.9011**</sub> |<sub>**28.99/0.7917**</sub> |<sub>**27.85/0.7455**</sub> |<sub>**27.03/0.8153**</sub> |<sub>**31.66/0.9196**</sub>|
|
48 |
+
|
49 |
+
## Quick Test
|
50 |
+
#### Dependencies
|
51 |
+
- Python 3
|
52 |
+
- [PyTorch >= 0.4](https://pytorch.org/) (CUDA version >= 7.5 if installing with CUDA. [More details](https://pytorch.org/get-started/previous-versions/))
|
53 |
+
- Python packages: `pip install numpy opencv-python`
|
54 |
+
|
55 |
+
### Test models
|
56 |
+
1. Clone this github repo.
|
57 |
+
```
|
58 |
+
git clone https://github.com/xinntao/ESRGAN
|
59 |
+
cd ESRGAN
|
60 |
+
```
|
61 |
+
2. Place your own **low-resolution images** in `./LR` folder. (There are two sample images - baboon and comic).
|
62 |
+
3. Download pretrained models from [Google Drive](https://drive.google.com/drive/u/0/folders/17VYV_SoZZesU6mbxz2dMAIccSSlqLecY) or [Baidu Drive](https://pan.baidu.com/s/1-Lh6ma-wXzfH8NqeBtPaFQ). Place the models in `./models`. We provide two models with high perceptual quality and high PSNR performance (see [model list](https://github.com/xinntao/ESRGAN/tree/master/models)).
|
63 |
+
4. Run test. We provide ESRGAN model and RRDB_PSNR model.
|
64 |
+
```
|
65 |
+
python test.py models/RRDB_ESRGAN_x4.pth
|
66 |
+
python test.py models/RRDB_PSNR_x4.pth
|
67 |
+
```
|
68 |
+
5. The results are in `./results` folder.
|
69 |
+
### Network interpolation demo
|
70 |
+
You can interpolate the RRDB_ESRGAN and RRDB_PSNR models with alpha in [0, 1].
|
71 |
+
|
72 |
+
1. Run `python net_interp.py 0.8`, where *0.8* is the interpolation parameter and you can change it to any value in [0,1].
|
73 |
+
2. Run `python test.py models/interp_08.pth`, where *models/interp_08.pth* is the model path.
|
74 |
+
|
75 |
+
<p align="center">
|
76 |
+
<img height="400" src="figures/43074.gif">
|
77 |
+
</p>
|
78 |
+
|
79 |
+
## Perceptual-driven SR Results
|
80 |
+
|
81 |
+
You can download all the resutls from [Google Drive](https://drive.google.com/drive/folders/1iaM-c6EgT1FNoJAOKmDrK7YhEhtlKcLx?usp=sharing). (:heavy_check_mark: included; :heavy_minus_sign: not included; :o: TODO)
|
82 |
+
|
83 |
+
HR images can be downloaed from [BasicSR-Datasets](https://github.com/xinntao/BasicSR#datasets).
|
84 |
+
|
85 |
+
| Datasets |LR | [*ESRGAN*](https://arxiv.org/abs/1809.00219) | [SRGAN](https://arxiv.org/abs/1609.04802) | [EnhanceNet](http://openaccess.thecvf.com/content_ICCV_2017/papers/Sajjadi_EnhanceNet_Single_Image_ICCV_2017_paper.pdf) | [CX](https://arxiv.org/abs/1803.04626) |
|
86 |
+
|:---:|:---:|:---:|:---:|:---:|:---:|
|
87 |
+
| Set5 |:heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
|
88 |
+
| Set14 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
|
89 |
+
| BSDS100 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:| :o: |
|
90 |
+
| [PIRM](https://pirm.github.io/) <br><sup>(val, test)</sup> | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :heavy_check_mark: |
|
91 |
+
| [OST300](https://arxiv.org/pdf/1804.02815.pdf) |:heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
|
92 |
+
| urban100 | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
|
93 |
+
| [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) <br><sup>(val, test)</sup> | :heavy_check_mark: | :heavy_check_mark: | :heavy_minus_sign: | :heavy_check_mark:| :o: |
|
94 |
+
|
95 |
+
## ESRGAN
|
96 |
+
We improve the [SRGAN](https://arxiv.org/abs/1609.04802) from three aspects:
|
97 |
+
1. adopt a deeper model using Residual-in-Residual Dense Block (RRDB) without batch normalization layers.
|
98 |
+
2. employ [Relativistic average GAN](https://ajolicoeur.wordpress.com/relativisticgan/) instead of the vanilla GAN.
|
99 |
+
3. improve the perceptual loss by using the features before activation.
|
100 |
+
|
101 |
+
In contrast to SRGAN, which claimed that **deeper models are increasingly difficult to train**, our deeper ESRGAN model shows its superior performance with easy training.
|
102 |
+
|
103 |
+
<p align="center">
|
104 |
+
<img height="120" src="figures/architecture.jpg">
|
105 |
+
</p>
|
106 |
+
<p align="center">
|
107 |
+
<img height="180" src="figures/RRDB.png">
|
108 |
+
</p>
|
109 |
+
|
110 |
+
## Network Interpolation
|
111 |
+
We propose the **network interpolation strategy** to balance the visual quality and PSNR.
|
112 |
+
|
113 |
+
<p align="center">
|
114 |
+
<img height="500" src="figures/net_interp.jpg">
|
115 |
+
</p>
|
116 |
+
|
117 |
+
We show the smooth animation with the interpolation parameters changing from 0 to 1.
|
118 |
+
Interestingly, it is observed that the network interpolation strategy provides a smooth control of the RRDB_PSNR model and the fine-tuned ESRGAN model.
|
119 |
+
|
120 |
+
<p align="center">
|
121 |
+
<img height="480" src="figures/81.gif">
|
122 |
+
   
|
123 |
+
<img height="480" src="figures/102061.gif">
|
124 |
+
</p>
|
125 |
+
|
126 |
+
## Qualitative Results
|
127 |
+
PSNR (evaluated on the Y channel) and the perceptual index used in the PIRM-SR challenge are also provided for reference.
|
128 |
+
|
129 |
+
<p align="center">
|
130 |
+
<img src="figures/qualitative_cmp_01.jpg">
|
131 |
+
</p>
|
132 |
+
<p align="center">
|
133 |
+
<img src="figures/qualitative_cmp_02.jpg">
|
134 |
+
</p>
|
135 |
+
<p align="center">
|
136 |
+
<img src="figures/qualitative_cmp_03.jpg">
|
137 |
+
</p>
|
138 |
+
<p align="center">
|
139 |
+
<img src="figures/qualitative_cmp_04.jpg">
|
140 |
+
</p>
|
141 |
+
|
142 |
+
## Ablation Study
|
143 |
+
Overall visual comparisons for showing the effects of each component in
|
144 |
+
ESRGAN. Each column represents a model with its configurations in the top.
|
145 |
+
The red sign indicates the main improvement compared with the previous model.
|
146 |
+
<p align="center">
|
147 |
+
<img src="figures/abalation_study.png">
|
148 |
+
</p>
|
149 |
+
|
150 |
+
## BN artifacts
|
151 |
+
We empirically observe that BN layers tend to bring artifacts. These artifacts,
|
152 |
+
namely BN artifacts, occasionally appear among iterations and different settings,
|
153 |
+
violating the needs for a stable performance over training. We find that
|
154 |
+
the network depth, BN position, training dataset and training loss
|
155 |
+
have impact on the occurrence of BN artifacts.
|
156 |
+
<p align="center">
|
157 |
+
<img src="figures/BN_artifacts.jpg">
|
158 |
+
</p>
|
159 |
+
|
160 |
+
## Useful techniques to train a very deep network
|
161 |
+
We find that residual scaling and smaller initialization can help to train a very deep network. More details are in the Supplementary File attached in our [paper](https://arxiv.org/abs/1809.00219).
|
162 |
+
|
163 |
+
<p align="center">
|
164 |
+
<img height="250" src="figures/train_deeper_neta.png">
|
165 |
+
<img height="250" src="figures/train_deeper_netb.png">
|
166 |
+
</p>
|
167 |
+
|
168 |
+
## The influence of training patch size
|
169 |
+
We observe that training a deeper network benefits from a larger patch size. Moreover, the deeper model achieves more improvement (∼0.12dB) than the shallower one (∼0.04dB) since larger model capacity is capable of taking full advantage of
|
170 |
+
larger training patch size. (Evaluated on Set5 dataset with RGB channels.)
|
171 |
+
<p align="center">
|
172 |
+
<img height="250" src="figures/patch_a.png">
|
173 |
+
<img height="250" src="figures/patch_b.png">
|
174 |
+
</p>
|
esrgan_old/architecture.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from . import block as B
|
5 |
+
|
6 |
+
|
7 |
+
class RRDB_Net(nn.Module):
|
8 |
+
def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', \
|
9 |
+
mode='CNA', res_scale=1, upsample_mode='upconv'):
|
10 |
+
super(RRDB_Net, self).__init__()
|
11 |
+
n_upscale = int(math.log(upscale, 2))
|
12 |
+
if upscale == 3:
|
13 |
+
n_upscale = 1
|
14 |
+
|
15 |
+
fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None)
|
16 |
+
rb_blocks = [B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
|
17 |
+
norm_type=norm_type, act_type=act_type, mode='CNA') for _ in range(nb)]
|
18 |
+
LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode)
|
19 |
+
|
20 |
+
if upsample_mode == 'upconv':
|
21 |
+
upsample_block = B.upconv_blcok
|
22 |
+
elif upsample_mode == 'pixelshuffle':
|
23 |
+
upsample_block = B.pixelshuffle_block
|
24 |
+
else:
|
25 |
+
raise NotImplementedError('upsample mode [%s] is not found' % upsample_mode)
|
26 |
+
if upscale == 3:
|
27 |
+
upsampler = upsample_block(nf, nf, 3, act_type=act_type)
|
28 |
+
else:
|
29 |
+
upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in range(n_upscale)]
|
30 |
+
HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type)
|
31 |
+
HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None)
|
32 |
+
|
33 |
+
self.model = B.sequential(fea_conv, B.ShortcutBlock(B.sequential(*rb_blocks, LR_conv)),\
|
34 |
+
*upsampler, HR_conv0, HR_conv1)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.model(x)
|
38 |
+
return x
|
esrgan_old/block.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
####################
|
6 |
+
# Basic blocks
|
7 |
+
####################
|
8 |
+
|
9 |
+
|
10 |
+
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1):
|
11 |
+
# helper selecting activation
|
12 |
+
# neg_slope: for leakyrelu and init of prelu
|
13 |
+
# n_prelu: for p_relu num_parameters
|
14 |
+
act_type = act_type.lower()
|
15 |
+
if act_type == 'relu':
|
16 |
+
layer = nn.ReLU(inplace)
|
17 |
+
elif act_type == 'leakyrelu':
|
18 |
+
layer = nn.LeakyReLU(neg_slope, inplace)
|
19 |
+
elif act_type == 'prelu':
|
20 |
+
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
21 |
+
else:
|
22 |
+
raise NotImplementedError('activation layer [%s] is not found' % act_type)
|
23 |
+
return layer
|
24 |
+
|
25 |
+
|
26 |
+
def norm(norm_type, nc):
|
27 |
+
# helper selecting normalization layer
|
28 |
+
norm_type = norm_type.lower()
|
29 |
+
if norm_type == 'batch':
|
30 |
+
layer = nn.BatchNorm2d(nc, affine=True)
|
31 |
+
elif norm_type == 'instance':
|
32 |
+
layer = nn.InstanceNorm2d(nc, affine=False)
|
33 |
+
else:
|
34 |
+
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
|
35 |
+
return layer
|
36 |
+
|
37 |
+
|
38 |
+
def pad(pad_type, padding):
|
39 |
+
# helper selecting padding layer
|
40 |
+
# if padding is 'zero', do by conv layers
|
41 |
+
pad_type = pad_type.lower()
|
42 |
+
if padding == 0:
|
43 |
+
return None
|
44 |
+
if pad_type == 'reflect':
|
45 |
+
layer = nn.ReflectionPad2d(padding)
|
46 |
+
elif pad_type == 'replicate':
|
47 |
+
layer = nn.ReplicationPad2d(padding)
|
48 |
+
else:
|
49 |
+
raise NotImplementedError('padding layer [%s] is not implemented' % pad_type)
|
50 |
+
return layer
|
51 |
+
|
52 |
+
|
53 |
+
def get_valid_padding(kernel_size, dilation):
|
54 |
+
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
|
55 |
+
padding = (kernel_size - 1) // 2
|
56 |
+
return padding
|
57 |
+
|
58 |
+
|
59 |
+
class ConcatBlock(nn.Module):
|
60 |
+
# Concat the output of a submodule to its input
|
61 |
+
def __init__(self, submodule):
|
62 |
+
super(ConcatBlock, self).__init__()
|
63 |
+
self.sub = submodule
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
output = torch.cat((x, self.sub(x)), dim=1)
|
67 |
+
return output
|
68 |
+
|
69 |
+
def __repr__(self):
|
70 |
+
tmpstr = 'Identity .. \n|'
|
71 |
+
modstr = self.sub.__repr__().replace('\n', '\n|')
|
72 |
+
tmpstr = tmpstr + modstr
|
73 |
+
return tmpstr
|
74 |
+
|
75 |
+
|
76 |
+
class ShortcutBlock(nn.Module):
|
77 |
+
#Elementwise sum the output of a submodule to its input
|
78 |
+
def __init__(self, submodule):
|
79 |
+
super(ShortcutBlock, self).__init__()
|
80 |
+
self.sub = submodule
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
output = x + self.sub(x)
|
84 |
+
return output
|
85 |
+
|
86 |
+
def __repr__(self):
|
87 |
+
tmpstr = 'Identity + \n|'
|
88 |
+
modstr = self.sub.__repr__().replace('\n', '\n|')
|
89 |
+
tmpstr = tmpstr + modstr
|
90 |
+
return tmpstr
|
91 |
+
|
92 |
+
|
93 |
+
def sequential(*args):
|
94 |
+
# Flatten Sequential. It unwraps nn.Sequential.
|
95 |
+
if len(args) == 1:
|
96 |
+
if isinstance(args[0], OrderedDict):
|
97 |
+
raise NotImplementedError('sequential does not support OrderedDict input.')
|
98 |
+
return args[0] # No sequential is needed.
|
99 |
+
modules = []
|
100 |
+
for module in args:
|
101 |
+
if isinstance(module, nn.Sequential):
|
102 |
+
for submodule in module.children():
|
103 |
+
modules.append(submodule)
|
104 |
+
elif isinstance(module, nn.Module):
|
105 |
+
modules.append(module)
|
106 |
+
return nn.Sequential(*modules)
|
107 |
+
|
108 |
+
|
109 |
+
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
|
110 |
+
pad_type='zero', norm_type=None, act_type='relu', mode='CNA'):
|
111 |
+
"""
|
112 |
+
Conv layer with padding, normalization, activation
|
113 |
+
mode: CNA --> Conv -> Norm -> Act
|
114 |
+
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
|
115 |
+
"""
|
116 |
+
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode
|
117 |
+
padding = get_valid_padding(kernel_size, dilation)
|
118 |
+
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
|
119 |
+
padding = padding if pad_type == 'zero' else 0
|
120 |
+
|
121 |
+
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \
|
122 |
+
dilation=dilation, bias=bias, groups=groups)
|
123 |
+
a = act(act_type) if act_type else None
|
124 |
+
if 'CNA' in mode:
|
125 |
+
n = norm(norm_type, out_nc) if norm_type else None
|
126 |
+
return sequential(p, c, n, a)
|
127 |
+
elif mode == 'NAC':
|
128 |
+
if norm_type is None and act_type is not None:
|
129 |
+
a = act(act_type, inplace=False)
|
130 |
+
# Important!
|
131 |
+
# input----ReLU(inplace)----Conv--+----output
|
132 |
+
# |________________________|
|
133 |
+
# inplace ReLU will modify the input, therefore wrong output
|
134 |
+
n = norm(norm_type, in_nc) if norm_type else None
|
135 |
+
return sequential(n, a, p, c)
|
136 |
+
|
137 |
+
|
138 |
+
####################
|
139 |
+
# Useful blocks
|
140 |
+
####################
|
141 |
+
|
142 |
+
|
143 |
+
class ResNetBlock(nn.Module):
|
144 |
+
"""
|
145 |
+
ResNet Block, 3-3 style
|
146 |
+
with extra residual scaling used in EDSR
|
147 |
+
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
|
148 |
+
"""
|
149 |
+
|
150 |
+
def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \
|
151 |
+
bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1):
|
152 |
+
super(ResNetBlock, self).__init__()
|
153 |
+
conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
|
154 |
+
norm_type, act_type, mode)
|
155 |
+
if mode == 'CNA':
|
156 |
+
act_type = None
|
157 |
+
if mode == 'CNAC': # Residual path: |-CNAC-|
|
158 |
+
act_type = None
|
159 |
+
norm_type = None
|
160 |
+
conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
|
161 |
+
norm_type, act_type, mode)
|
162 |
+
# if in_nc != out_nc:
|
163 |
+
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
|
164 |
+
# None, None)
|
165 |
+
# print('Need a projecter in ResNetBlock.')
|
166 |
+
# else:
|
167 |
+
# self.project = lambda x:x
|
168 |
+
self.res = sequential(conv0, conv1)
|
169 |
+
self.res_scale = res_scale
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
res = self.res(x).mul(self.res_scale)
|
173 |
+
return x + res
|
174 |
+
|
175 |
+
|
176 |
+
class ResidualDenseBlock_5C(nn.Module):
|
177 |
+
"""
|
178 |
+
Residual Dense Block
|
179 |
+
style: 5 convs
|
180 |
+
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
|
184 |
+
norm_type=None, act_type='leakyrelu', mode='CNA'):
|
185 |
+
super(ResidualDenseBlock_5C, self).__init__()
|
186 |
+
# gc: growth channel, i.e. intermediate channels
|
187 |
+
self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
|
188 |
+
norm_type=norm_type, act_type=act_type, mode=mode)
|
189 |
+
self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
|
190 |
+
norm_type=norm_type, act_type=act_type, mode=mode)
|
191 |
+
self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
|
192 |
+
norm_type=norm_type, act_type=act_type, mode=mode)
|
193 |
+
self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
|
194 |
+
norm_type=norm_type, act_type=act_type, mode=mode)
|
195 |
+
if mode == 'CNA':
|
196 |
+
last_act = None
|
197 |
+
else:
|
198 |
+
last_act = act_type
|
199 |
+
self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \
|
200 |
+
norm_type=norm_type, act_type=last_act, mode=mode)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
x1 = self.conv1(x)
|
204 |
+
x2 = self.conv2(torch.cat((x, x1), 1))
|
205 |
+
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
206 |
+
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
207 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
208 |
+
return x5.mul(0.2) + x
|
209 |
+
|
210 |
+
|
211 |
+
class RRDB(nn.Module):
|
212 |
+
"""
|
213 |
+
Residual in Residual Dense Block
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
|
217 |
+
norm_type=None, act_type='leakyrelu', mode='CNA'):
|
218 |
+
super(RRDB, self).__init__()
|
219 |
+
self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
|
220 |
+
norm_type, act_type, mode)
|
221 |
+
self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
|
222 |
+
norm_type, act_type, mode)
|
223 |
+
self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
|
224 |
+
norm_type, act_type, mode)
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
out = self.RDB1(x)
|
228 |
+
out = self.RDB2(out)
|
229 |
+
out = self.RDB3(out)
|
230 |
+
return out.mul(0.2) + x
|
231 |
+
|
232 |
+
|
233 |
+
####################
|
234 |
+
# Upsampler
|
235 |
+
####################
|
236 |
+
|
237 |
+
|
238 |
+
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
239 |
+
pad_type='zero', norm_type=None, act_type='relu'):
|
240 |
+
"""
|
241 |
+
Pixel shuffle layer
|
242 |
+
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
|
243 |
+
Neural Network, CVPR17)
|
244 |
+
"""
|
245 |
+
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
|
246 |
+
pad_type=pad_type, norm_type=None, act_type=None)
|
247 |
+
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
248 |
+
|
249 |
+
n = norm(norm_type, out_nc) if norm_type else None
|
250 |
+
a = act(act_type) if act_type else None
|
251 |
+
return sequential(conv, pixel_shuffle, n, a)
|
252 |
+
|
253 |
+
|
254 |
+
def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
255 |
+
pad_type='zero', norm_type=None, act_type='relu', mode='nearest'):
|
256 |
+
# Up conv
|
257 |
+
# described in https://distill.pub/2016/deconv-checkerboard/
|
258 |
+
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
|
259 |
+
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
|
260 |
+
pad_type=pad_type, norm_type=norm_type, act_type=act_type)
|
261 |
+
return sequential(upsample, conv)
|
esrgan_old/net_interp.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
from collections import OrderedDict
|
4 |
+
|
5 |
+
alpha = float(sys.argv[1])
|
6 |
+
|
7 |
+
net_PSNR_path = './models/RRDB_PSNR_x4.pth'
|
8 |
+
net_ESRGAN_path = './models/RRDB_ESRGAN_x4.pth'
|
9 |
+
net_interp_path = './models/interp_{:02d}.pth'.format(int(alpha*10))
|
10 |
+
|
11 |
+
net_PSNR = torch.load(net_PSNR_path)
|
12 |
+
net_ESRGAN = torch.load(net_ESRGAN_path)
|
13 |
+
net_interp = OrderedDict()
|
14 |
+
|
15 |
+
print('Interpolating with alpha = ', alpha)
|
16 |
+
|
17 |
+
for k, v_PSNR in net_PSNR.items():
|
18 |
+
v_ESRGAN = net_ESRGAN[k]
|
19 |
+
net_interp[k] = (1 - alpha) * v_PSNR + alpha * v_ESRGAN
|
20 |
+
|
21 |
+
torch.save(net_interp, net_interp_path)
|
known_models.yaml
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models:
|
2 |
+
- name: "AnimeSharp 4x"
|
3 |
+
type: esrgan_old
|
4 |
+
file: "./torch_models/4x-AnimeSharp.pth"
|
5 |
+
sha256: e7a7de2dafd7331c1992862bbbcd9e9712a9f9f8e6303f0aaa59b4341d359bab
|
6 |
+
scale: 4
|
7 |
+
description: "Anime or Text"
|
8 |
+
author: "[Kim2091](https://upscale.wiki/wiki/User:Kim2091)"
|
9 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
10 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
11 |
+
- name: "AnimeSharp Lite 4x"
|
12 |
+
type: esrgan_old_lite
|
13 |
+
file: "./torch_models/4x-AnimeSharp-lite.pth"
|
14 |
+
sha256: a0a224521dcc547768e8442e83b68f98f485b3cbcc8bd207a6284fff6636329c
|
15 |
+
scale: 4
|
16 |
+
description: "Anime"
|
17 |
+
author: "[Kim2091](https://upscale.wiki/wiki/User:Kim2091)"
|
18 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
19 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
20 |
+
- name: "UltraSharp 4x"
|
21 |
+
type: esrgan_old
|
22 |
+
file: "./torch_models/4x-UltraSharp.pth"
|
23 |
+
sha256: a5812231fc936b42af08a5edba784195495d303d5b3248c24489ef0c4021fe01
|
24 |
+
scale: 4
|
25 |
+
description: "Universal Upscaler"
|
26 |
+
author: "[Kim2091](https://upscale.wiki/wiki/User:Kim2091)"
|
27 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
28 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
29 |
+
- name: "NMKD Siax (\"CX\") 4x"
|
30 |
+
type: esrgan_old
|
31 |
+
file: "./torch_models/4x_NMKD-Siax_200k.pth"
|
32 |
+
sha256: 560424d9f68625713fc47e9e7289a98aabe1d744e1cd6a9ae5a35e9957fd127e
|
33 |
+
scale: 4
|
34 |
+
description: "Universal upscaler for clean and slightly compressed images"
|
35 |
+
author: "[Nmkd](https://upscale.wiki/wiki/User:Nmkd)"
|
36 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
37 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
38 |
+
- name: "NMKD Jaywreck3 Lite"
|
39 |
+
type: esrgan_old_lite
|
40 |
+
file: "./torch_models/1x_NMKD-Jaywreck3-Lite_320k.pth"
|
41 |
+
sha256: 3b2654a3bfa6e07bdebde48414d69b89ee3a1d1516ff9b26c3f4c6ee14f7d3f0
|
42 |
+
scale: 1
|
43 |
+
description: "Restore JPEG compression"
|
44 |
+
author: "[Nmkd](https://upscale.wiki/wiki/User:Nmkd)"
|
45 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
46 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
47 |
+
- name: "NMKD Jaywreck3 Soft Lite"
|
48 |
+
type: esrgan_old_lite
|
49 |
+
file: "./torch_models/1x_NMKD-Jaywreck3-Soft-Lite_320k.pth"
|
50 |
+
sha256: bbd1b6e9002ad9cbb4c5049850a361e110b8ed0ae22f5ed0fb49ddf5a6951f53
|
51 |
+
scale: 1
|
52 |
+
description: "Restore JPEG compression"
|
53 |
+
author: "[Nmkd](https://upscale.wiki/wiki/User:Nmkd)"
|
54 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
55 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
56 |
+
- name: "DeGif 2x"
|
57 |
+
type: esrgan_old
|
58 |
+
file: "./torch_models/2x_NMKD-DeGIF_210000_G.pth"
|
59 |
+
sha256: a1c4aad3eb19894afda5dcc12982541ce15f79bd47916137cbeb26e702040626
|
60 |
+
scale: 2
|
61 |
+
description: "GIF Restoration"
|
62 |
+
author: "[Nmkd](https://upscale.wiki/wiki/User:Nmkd)"
|
63 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
64 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
65 |
+
- name: "4x eula digimanga bw v1"
|
66 |
+
type: esrgan_old
|
67 |
+
file: "./torch_models/4x_eula_digimanga_bw_v1_860k.pth"
|
68 |
+
sha256: a3ba78a589cf2f2c39fe77cf3f472173cdcb3ade7dcc77ee5d1cd266d733e3d3
|
69 |
+
scale: 4
|
70 |
+
description: "Black and white digital manga with halftones."
|
71 |
+
author: "end user license agreement#9756"
|
72 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
73 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
74 |
+
- name: "4x eula digimanga bw v2 (Monochrome)"
|
75 |
+
type: esrgan_old
|
76 |
+
file: "./torch_models/4x_eula_digimanga_bw_v2_nc1_307k.pth"
|
77 |
+
sha256: 0c3ff9f7b4fc11b21e1262bca06efada0b0723436623db5e2af37fa2291cb750
|
78 |
+
scale: 4
|
79 |
+
monochrome: true
|
80 |
+
cuda: true
|
81 |
+
description: "Black and white digital manga with halftones. Vast improvement over v1 in low frequency detail. v1 may still be better in some edge cases."
|
82 |
+
author: "end user license agreement#9756"
|
83 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
84 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
85 |
+
- name: "ReFocus V3"
|
86 |
+
type: esrgan_old
|
87 |
+
file: "./torch_models/1x_ReFocus_V3_140000_G.pth"
|
88 |
+
sha256: 94d8f38726c7abaa83a3fad27c01863ba961f76a995d8541c173eb3195062547
|
89 |
+
scale: 1
|
90 |
+
description: "DeBlur, ReFocus, Sharpen Manga, Anime and cartoon style images, but will work on real life images too."
|
91 |
+
author: "[Twittman](https://upscale.wiki/wiki/User:Twittman)"
|
92 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
93 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
94 |
+
- name: "Realistic Rescaler 4x"
|
95 |
+
type: real_esrgan
|
96 |
+
file: "./torch_models/4x_RealisticRescaler_100000_G.pth"
|
97 |
+
sha256: 7381a1229143c9301a94421b610d95eb312e2555743cc9e80099a0e15ac5bd3b
|
98 |
+
scale: 4
|
99 |
+
description: "This model was made to upscale realistic low-res textures that are compressed by either JPEG or BC1. From my testing, this works rather well on realistic GameCube textures such as the ones from Shrek Extra Large and the board textures from Mario Party 4. This model could also work on some real life images, especially the ones that are taken outdoors."
|
100 |
+
author: "Mutin Choler"
|
101 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
102 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
103 |
+
- name: "Pixel Perfect V4 4x"
|
104 |
+
type: esrgan_old
|
105 |
+
file: "./torch_models/4x_PixelPerfectV4_137000_G.pth"
|
106 |
+
sha256: 52bcda86effc93e07d868036f53dd2f4a38016cdd636b66ebbf6c4525223eb5f
|
107 |
+
scale: 4
|
108 |
+
description: "Sprite Upscaler"
|
109 |
+
author: "Mutin Choler"
|
110 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
111 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
112 |
+
- name: "Anime Undeint"
|
113 |
+
type: real_esrgan_compact
|
114 |
+
file: "./torch_models/1x_AnimeUndeint_Compact_130k_net_g.pth"
|
115 |
+
sha256: f8b2b98c4e5dd3989b836414e2624e0795d74a8eba44e32cba6d18cce181140c
|
116 |
+
scale: 1
|
117 |
+
description: "This model corrects jagged lines on animation that has been deinterlaced. It handles simple line doubling, line interpolation, and even Yadif-style artifacts. It can also handle sources that were resized after deinterlacing, for example resizing from ntsc to pal resolutions. If a source has been upscaled after deinterlacing, it will need to be downsized before applying this model."
|
118 |
+
author: "Zarxrax"
|
119 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
120 |
+
license: "[WTFPL](http://www.wtfpl.net/)"
|
121 |
+
- name: "Fabric 4x"
|
122 |
+
type: esrgan_old
|
123 |
+
file: "./torch_models/4x-Fabric.pth"
|
124 |
+
sha256: 4a4c7924dfa830aed4dfd1126b1a7ee64a6611260edd03da79e3de842e52024a
|
125 |
+
scale: 4
|
126 |
+
description: "This model set upscales fabric or cloth textures (works on cats too!). The Alt model is just an earlier iteration version. It may work better on some images.The images need to be minimally compressed or passed through a decompression model first. It works with DDS compression though."
|
127 |
+
author: "[Kim2091](https://upscale.wiki/wiki/User:Kim2091)"
|
128 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
129 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
130 |
+
- name: "Face Focus 4x"
|
131 |
+
type: esrgan_old
|
132 |
+
file: "./torch_models/4x_face_focus_275k.pth"
|
133 |
+
sha256: a5b0546243a01f98ae63faaa691351be55416bb723271fb4f5147548b8c0b613
|
134 |
+
scale: 4
|
135 |
+
description: "Face De-blur - slightly out of focus / blurred images of faces. It is aimed at faces / hair"
|
136 |
+
author: "[LyonHrt](https://upscale.wiki/wiki/User:LyonHrt"
|
137 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
138 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
139 |
+
- name: "FatePlus lite 4x"
|
140 |
+
type: esrgan_old_lite
|
141 |
+
file: "./torch_models/4x-FatePlus-lite.pth"
|
142 |
+
sha256: 959c8d9c39e57092d02cb90d82ad1a8d9297cd57d59e43c0243bea2c9eae83da
|
143 |
+
scale: 4
|
144 |
+
description: "Anime PSP games, Fate Extra\n\nThis model was trained as a favor to Demon and the Fate Extra community. It leaves a nice grain on the images and upscales lines and details accurately without looking odd. This model works on most anime-style PSP games. Enjoy! It works best on content with dithering and quantization."
|
145 |
+
author: "[Kim2091](https://upscale.wiki/wiki/User:Kim2091)"
|
146 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
147 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
148 |
+
- name: "Remacri Upscaler 4x"
|
149 |
+
type: esrgan_old
|
150 |
+
file: "./torch_models/4x_foolhardy_Remacri.pth"
|
151 |
+
sha256: e1a73bd89c2da1ae494774746398689048b5a892bd9653e146713f9df8bca86a
|
152 |
+
scale: 4
|
153 |
+
description: "A creation of BSRGAN with more details and less smoothing, made by interpolating IRL models such as Siax, Superscale, Superscale Artisoft, Pixel Perfect, etc. This was, things like skin and other details don't become mushy and blurry."
|
154 |
+
author: "Foolhardy"
|
155 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
156 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
157 |
+
- name: "sudo UltraCompact 2x 1.121.175 G"
|
158 |
+
type: real_esrgan_compact
|
159 |
+
file: "./torch_models/sudo_UltraCompact_2x_1.121.175_G.pth"
|
160 |
+
sha256: e53987f0312dee424b4dbd9dce7b2eacbe03fdf1380e44a11f8a4d2ca88c99e3
|
161 |
+
scale: 2
|
162 |
+
features: 64
|
163 |
+
convs: 8
|
164 |
+
cuda: true
|
165 |
+
description: "Realtime animation restauration and doing stuff like deblur and compression artefact removal"
|
166 |
+
author: "sudo"
|
167 |
+
source: "[upscale.wiki Model Database](https://upscale.wiki/wiki/Model_Database)"
|
168 |
+
license: "[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)"
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.1
|
2 |
+
torchvision==0.14.1
|
3 |
+
basicsr==1.4.2
|
4 |
+
coremltools==6.2
|
5 |
+
psutil==5.9.0
|
6 |
+
chardet==4.0.0
|