File size: 5,184 Bytes
a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb a4f5679 a21dabb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import multiprocessing
import time
from langchain.docstore.document import Document as LangChainDocument
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from huggingface_hub import login
from loguru import logger
from transformers import pipeline
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import os
from dotenv import load_dotenv
vector_database_builded = False
def load_document():
logger.info('Carregando arquivo no qual será baseado o RAG.')
with open('train.txt', 'r') as f:
data = f.read()
logger.info('Representando o documento utilizando o LangChainDocument.')
raw_database = LangChainDocument(page_content=data)
return raw_database
def generate_chunks(raw_database):
MARKDOWN_SEPARATORS = [
"\n#{1,6} ",
"```\n",
"\n\\*\\*\\*+\n",
"\n---+\n",
"\n___+\n",
"\n\n",
"\n",
" ",
"",
]
logger.info('Quebrando o documento para a criação dos chunks.')
splitter = RecursiveCharacterTextSplitter(separators=MARKDOWN_SEPARATORS, chunk_size=1000, chunk_overlap=100)
process_data = splitter.split_documents([raw_database])
process_data = process_data[:5] # TODO: REMOVER DEPOIS
embedding_model_name = "thenlper/gte-small"
logger.info(f'Definição do modelo de embeddings: {embedding_model_name}.')
embedding_model = HuggingFaceEmbeddings(
model_name=embedding_model_name,
multi_process=True,
model_kwargs={"device": "cuda"}, # TODO: AJUSTAR DEPOIS
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
)
return process_data, embedding_model
def build_vector_database():
raw_database = load_document()
process_data, embedding_model = generate_chunks(raw_database)
logger.info('Criação da base de dados vetorial (em memória).')
vectors = FAISS.from_documents(process_data, embedding_model)
return vectors
def load_model():
load_dotenv()
login(token=os.getenv('HF_TOKEN'))
time.sleep(2)
# model_name = "meta-llama/Llama-3.2-1B"
model_name = "HuggingFaceH4/zephyr-7b-beta"
# model_name = "mistralai/Mistral-7B-Instruct-v0.3"
# model_name = "meta-llama/Llama-3.2-3B-Instruct"
logger.info(f'Carregamento do modelo de linguagem principal: {model_name}')
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm_model = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
do_sample=True,
temperature=0.4,
repetition_penalty=1.1,
return_full_text=False,
max_new_tokens=500
)
logger.info(f'Modelo {model_name} carregado com sucesso.')
return llm_model
def get_answer(question, use_context=True):
vectors = build_vector_database()
llm_model = load_model()
if use_context:
prompt = """
<|system|>
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
Respond only to the question asked.
<|user|>
Context:
{}
---
Here is the question you need to answer.
Question: {}
---
<|assistant|>
"""
search_results = vectors.similarity_search(question, k=3)
logger.info('Contexto: ')
for i, search_result in enumerate(search_results):
logger.info(f"{i + 1}) {search_result.page_content}")
context = " ".join([search_result.page_content for search_result in search_results])
final_prompt = prompt.format(context, question)
logger.info(f'Prompt final: \n{final_prompt}\n')
answer = llm_model(final_prompt)
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
else:
prompt = """
<|system|>
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
Respond only to the question asked.
<|user|>
---
Here is the question you need to answer.
Question: {}
---
<|assistant|>
"""
final_prompt = prompt.format(question)
logger.info(f'Prompt final: \n{final_prompt}\n')
answer = llm_model(final_prompt)
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
return answer[0]['generated_text']
|