Criação da classe Rag e atualização do app.py.
Browse files- app.py +5 -1
- app_bkp.py +0 -136
- app_echo.py +24 -0
- rag.py +158 -0
- rag_test.py +82 -42
- rag_test_bkp.py +119 -0
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
|
|
|
|
|
3 |
st.title('Echo Bot')
|
|
|
4 |
|
5 |
if "messages" not in st.session_state:
|
6 |
st.session_state.messages = []
|
@@ -16,7 +19,8 @@ if prompt:
|
|
16 |
|
17 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
18 |
|
19 |
-
response = f'**Echo**: {prompt}'
|
|
|
20 |
|
21 |
with st.chat_message('assistant'):
|
22 |
st.markdown(response)
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
from rag import Rag
|
4 |
+
|
5 |
st.title('Echo Bot')
|
6 |
+
rag = Rag()
|
7 |
|
8 |
if "messages" not in st.session_state:
|
9 |
st.session_state.messages = []
|
|
|
19 |
|
20 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
21 |
|
22 |
+
# response = f'**Echo**: {prompt}'
|
23 |
+
response = f'{rag.get_answer(prompt)}'
|
24 |
|
25 |
with st.chat_message('assistant'):
|
26 |
st.markdown(response)
|
app_bkp.py
DELETED
@@ -1,136 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import multiprocessing
|
3 |
-
from langchain.docstore.document import Document as LangChainDocument
|
4 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
from huggingface_hub import login
|
8 |
-
from loguru import logger
|
9 |
-
import os
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
|
12 |
-
multiprocessing.freeze_support()
|
13 |
-
load_dotenv()
|
14 |
-
access_token = os.getenv("ACCESS_TOKEN")
|
15 |
-
login(token=access_token)
|
16 |
-
logger.info('Login realizado com sucesso.')
|
17 |
-
|
18 |
-
logger.info('Carregando arquivo no qual será baseado o RAG.')
|
19 |
-
with open('train.txt', 'r') as f:
|
20 |
-
data = f.read()
|
21 |
-
|
22 |
-
logger.info('Representando o documento utilizando o LangChainDocument.')
|
23 |
-
raw_database = LangChainDocument(page_content=data)
|
24 |
-
|
25 |
-
MARKDOWN_SEPARATORS = [
|
26 |
-
"\n#{1,6} ",
|
27 |
-
"```\n",
|
28 |
-
"\n\\*\\*\\*+\n",
|
29 |
-
"\n---+\n",
|
30 |
-
"\n___+\n",
|
31 |
-
"\n\n",
|
32 |
-
"\n",
|
33 |
-
" ",
|
34 |
-
"",
|
35 |
-
]
|
36 |
-
|
37 |
-
logger.info('Quebrando o documento para a criação dos chunks.')
|
38 |
-
splitter = RecursiveCharacterTextSplitter(separators=MARKDOWN_SEPARATORS, chunk_size=1000, chunk_overlap=100)
|
39 |
-
process_data = splitter.split_documents([raw_database])
|
40 |
-
process_data = process_data[:5] # TODO: REMOVER DEPOIS
|
41 |
-
|
42 |
-
embedding_model_name = "thenlper/gte-small"
|
43 |
-
logger.info(f'Definição do modelo de embeddings: {embedding_model_name}.')
|
44 |
-
embedding_model = HuggingFaceEmbeddings(
|
45 |
-
model_name=embedding_model_name,
|
46 |
-
multi_process=True,
|
47 |
-
model_kwargs={"device": "cuda"},
|
48 |
-
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
49 |
-
)
|
50 |
-
|
51 |
-
logger.info('Criação da base de dados vetorial (em memória).')
|
52 |
-
vectors = FAISS.from_documents(process_data, embedding_model)
|
53 |
-
|
54 |
-
from transformers import pipeline
|
55 |
-
import torch
|
56 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
57 |
-
|
58 |
-
# model_name = "meta-llama/Llama-3.2-1B"
|
59 |
-
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
60 |
-
# model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
61 |
-
# model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
62 |
-
logger.info(f'Carregamento do modelo de linguagem principal: {model_name}')
|
63 |
-
|
64 |
-
bnb_config = BitsAndBytesConfig(
|
65 |
-
load_in_4bit=True,
|
66 |
-
bnb_4bit_use_double_quant=True,
|
67 |
-
bnb_4bit_quant_type="nf4",
|
68 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
69 |
-
)
|
70 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config)
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
72 |
-
|
73 |
-
llm_model = pipeline(
|
74 |
-
model=model,
|
75 |
-
tokenizer=tokenizer,
|
76 |
-
task="text-generation",
|
77 |
-
do_sample=True,
|
78 |
-
temperature=0.4,
|
79 |
-
repetition_penalty=1.1,
|
80 |
-
return_full_text=False,
|
81 |
-
max_new_tokens=500
|
82 |
-
)
|
83 |
-
logger.info(f'Modelo {model_name} carregado com sucesso.')
|
84 |
-
|
85 |
-
prompt = """
|
86 |
-
<|system|>
|
87 |
-
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
88 |
-
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
89 |
-
Respond only to the question asked.
|
90 |
-
|
91 |
-
<|user|>
|
92 |
-
Context:
|
93 |
-
{}
|
94 |
-
---
|
95 |
-
Here is the question you need to answer.
|
96 |
-
|
97 |
-
Question: {}
|
98 |
-
---
|
99 |
-
<|assistant|>
|
100 |
-
"""
|
101 |
-
|
102 |
-
st.title("Echo Bot")
|
103 |
-
|
104 |
-
if "messages" not in st.session_state:
|
105 |
-
st.session_state.messages = []
|
106 |
-
|
107 |
-
for message in st.session_state.messages:
|
108 |
-
with st.chat_message(message["role"]):
|
109 |
-
st.markdown(message["content"])
|
110 |
-
|
111 |
-
question = st.chat_input("How can I help you?")
|
112 |
-
if question:
|
113 |
-
with st.chat_message("user"):
|
114 |
-
st.markdown(prompt)
|
115 |
-
|
116 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
117 |
-
|
118 |
-
search_results = vectors.similarity_search(question, k=3)
|
119 |
-
|
120 |
-
logger.info('Contexto: ')
|
121 |
-
for i, search_result in enumerate(search_results):
|
122 |
-
logger.info(f"{i + 1}) {search_result.page_content}")
|
123 |
-
|
124 |
-
context = " ".join([search_result.page_content for search_result in search_results])
|
125 |
-
final_prompt = prompt.format(context, question)
|
126 |
-
logger.info(f'\n{final_prompt}\n')
|
127 |
-
|
128 |
-
answer = llm_model(final_prompt)
|
129 |
-
text_answer = answer[0]['generated_text']
|
130 |
-
|
131 |
-
logger.info("AI response: ", text_answer)
|
132 |
-
|
133 |
-
with st.chat_message("assistant"):
|
134 |
-
st.markdown(text_answer)
|
135 |
-
|
136 |
-
st.session_state.messages.append({"role": "assistant", "content": text_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_echo.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.title('Echo Bot')
|
4 |
+
|
5 |
+
if "messages" not in st.session_state:
|
6 |
+
st.session_state.messages = []
|
7 |
+
|
8 |
+
for message in st.session_state.messages:
|
9 |
+
with st.chat_message(message['role']):
|
10 |
+
st.markdown(message['content'])
|
11 |
+
|
12 |
+
prompt = st.chat_input('How can I help you?')
|
13 |
+
if prompt:
|
14 |
+
with st.chat_message('user'):
|
15 |
+
st.markdown(prompt)
|
16 |
+
|
17 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
18 |
+
|
19 |
+
response = f'**Echo**: {prompt}'
|
20 |
+
|
21 |
+
with st.chat_message('assistant'):
|
22 |
+
st.markdown(response)
|
23 |
+
|
24 |
+
st.session_state.messages.append({'role': 'assistant', 'content': response})
|
rag.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import time
|
3 |
+
|
4 |
+
from langchain.docstore.document import Document as LangChainDocument
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from huggingface_hub import login
|
9 |
+
from loguru import logger
|
10 |
+
from transformers import pipeline
|
11 |
+
import torch
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
13 |
+
import os
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
class Rag:
|
17 |
+
def __init__(self):
|
18 |
+
self.vectors = None
|
19 |
+
self.raw_database = None
|
20 |
+
self.process_data = None
|
21 |
+
self.embedding_model = None
|
22 |
+
self.llm_model = None
|
23 |
+
|
24 |
+
self.data_file_name = 'train.txt'
|
25 |
+
self.embedding_model_name = "thenlper/gte-small"
|
26 |
+
self.model_name = "HuggingFaceH4/zephyr-7b-beta"
|
27 |
+
|
28 |
+
multiprocessing.freeze_support()
|
29 |
+
|
30 |
+
def build_vector_database(self):
|
31 |
+
if self.vectors is None:
|
32 |
+
self.load_document()
|
33 |
+
self.generate_chunks()
|
34 |
+
|
35 |
+
logger.info('Criação da base de dados vetorial (em memória).')
|
36 |
+
self.vectors = FAISS.from_documents(self.process_data, self.embedding_model)
|
37 |
+
|
38 |
+
def load_document(self):
|
39 |
+
logger.info('Carregando arquivo no qual será baseado o RAG.')
|
40 |
+
with open(self.data_file_name, 'r') as f:
|
41 |
+
data = f.read()
|
42 |
+
|
43 |
+
logger.info('Representando o documento utilizando o LangChainDocument.')
|
44 |
+
self.raw_database = LangChainDocument(page_content=data)
|
45 |
+
|
46 |
+
def generate_chunks(self):
|
47 |
+
MARKDOWN_SEPARATORS = [
|
48 |
+
"\n#{1,6} ",
|
49 |
+
"```\n",
|
50 |
+
"\n\\*\\*\\*+\n",
|
51 |
+
"\n---+\n",
|
52 |
+
"\n___+\n",
|
53 |
+
"\n\n",
|
54 |
+
"\n",
|
55 |
+
" ",
|
56 |
+
"",
|
57 |
+
]
|
58 |
+
|
59 |
+
logger.info('Quebrando o documento para a criação dos chunks.')
|
60 |
+
splitter = RecursiveCharacterTextSplitter(separators=MARKDOWN_SEPARATORS, chunk_size=1000,
|
61 |
+
chunk_overlap=100)
|
62 |
+
self.process_data = splitter.split_documents([self.raw_database])
|
63 |
+
self.process_data = self.process_data[:5] # TODO: REMOVER DEPOIS
|
64 |
+
|
65 |
+
|
66 |
+
logger.info(f'Definição do modelo de embeddings: {self.embedding_model_name}.')
|
67 |
+
self.embedding_model = HuggingFaceEmbeddings(
|
68 |
+
model_name=self.embedding_model_name,
|
69 |
+
multi_process=True,
|
70 |
+
model_kwargs={"device": "cuda"}, # TODO: AJUSTAR DEPOIS
|
71 |
+
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
72 |
+
)
|
73 |
+
|
74 |
+
def load_model(self):
|
75 |
+
if self.llm_model is None:
|
76 |
+
load_dotenv()
|
77 |
+
login(token=os.getenv('HF_TOKEN'))
|
78 |
+
time.sleep(2)
|
79 |
+
|
80 |
+
logger.info(f'Carregamento do modelo de linguagem principal: {self.model_name}')
|
81 |
+
|
82 |
+
bnb_config = BitsAndBytesConfig(
|
83 |
+
load_in_4bit=True,
|
84 |
+
bnb_4bit_use_double_quant=True,
|
85 |
+
bnb_4bit_quant_type="nf4",
|
86 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
87 |
+
)
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_name, quantization_config=bnb_config)
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
90 |
+
|
91 |
+
self.llm_model = pipeline(
|
92 |
+
model=model,
|
93 |
+
tokenizer=tokenizer,
|
94 |
+
task="text-generation",
|
95 |
+
do_sample=True,
|
96 |
+
temperature=0.4,
|
97 |
+
repetition_penalty=1.1,
|
98 |
+
return_full_text=False,
|
99 |
+
max_new_tokens=500
|
100 |
+
)
|
101 |
+
logger.info(f'Modelo {self.model_name} carregado com sucesso.')
|
102 |
+
|
103 |
+
def get_answer(self, question, use_context=True):
|
104 |
+
self.build_vector_database()
|
105 |
+
self.load_model()
|
106 |
+
|
107 |
+
if use_context:
|
108 |
+
prompt = """
|
109 |
+
<|system|>
|
110 |
+
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
111 |
+
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
112 |
+
Respond only to the question asked.
|
113 |
+
|
114 |
+
<|user|>
|
115 |
+
Context:
|
116 |
+
{}
|
117 |
+
---
|
118 |
+
Here is the question you need to answer.
|
119 |
+
|
120 |
+
Question: {}
|
121 |
+
---
|
122 |
+
<|assistant|>
|
123 |
+
"""
|
124 |
+
|
125 |
+
search_results = self.vectors.similarity_search(question, k=3)
|
126 |
+
logger.info('Contexto: ')
|
127 |
+
for i, search_result in enumerate(search_results):
|
128 |
+
logger.info(f"{i + 1}) {search_result.page_content}")
|
129 |
+
|
130 |
+
context = " ".join([search_result.page_content for search_result in search_results])
|
131 |
+
|
132 |
+
final_prompt = prompt.format(context, question)
|
133 |
+
logger.info(f'Prompt final: \n{final_prompt}\n')
|
134 |
+
answer = self.llm_model(final_prompt)
|
135 |
+
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
|
136 |
+
|
137 |
+
else:
|
138 |
+
prompt = """
|
139 |
+
<|system|>
|
140 |
+
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
141 |
+
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
142 |
+
Respond only to the question asked.
|
143 |
+
|
144 |
+
<|user|>
|
145 |
+
---
|
146 |
+
Here is the question you need to answer.
|
147 |
+
|
148 |
+
Question: {}
|
149 |
+
---
|
150 |
+
<|assistant|>
|
151 |
+
"""
|
152 |
+
|
153 |
+
final_prompt = prompt.format(question)
|
154 |
+
logger.info(f'Prompt final: \n{final_prompt}\n')
|
155 |
+
answer = self.llm_model(final_prompt)
|
156 |
+
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
|
157 |
+
|
158 |
+
return answer[0]['generated_text']
|
rag_test.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import multiprocessing
|
|
|
|
|
2 |
from langchain.docstore.document import Document as LangChainDocument
|
3 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
@@ -11,16 +13,20 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
11 |
import os
|
12 |
from dotenv import load_dotenv
|
13 |
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
logger.info('Carregando arquivo no qual será baseado o RAG.')
|
18 |
with open('train.txt', 'r') as f:
|
19 |
data = f.read()
|
20 |
|
21 |
logger.info('Representando o documento utilizando o LangChainDocument.')
|
22 |
raw_database = LangChainDocument(page_content=data)
|
|
|
23 |
|
|
|
|
|
24 |
MARKDOWN_SEPARATORS = [
|
25 |
"\n#{1,6} ",
|
26 |
"```\n",
|
@@ -43,12 +49,26 @@ def main():
|
|
43 |
embedding_model = HuggingFaceEmbeddings(
|
44 |
model_name=embedding_model_name,
|
45 |
multi_process=True,
|
46 |
-
model_kwargs={"device": "cuda"},
|
47 |
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
48 |
)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
logger.info('Criação da base de dados vetorial (em memória).')
|
51 |
vectors = FAISS.from_documents(process_data, embedding_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# model_name = "meta-llama/Llama-3.2-1B"
|
54 |
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
@@ -77,42 +97,62 @@ def main():
|
|
77 |
)
|
78 |
logger.info(f'Modelo {model_name} carregado com sucesso.')
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import multiprocessing
|
2 |
+
import time
|
3 |
+
|
4 |
from langchain.docstore.document import Document as LangChainDocument
|
5 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
13 |
import os
|
14 |
from dotenv import load_dotenv
|
15 |
|
16 |
+
vector_database_builded = False
|
17 |
|
18 |
+
|
19 |
+
def load_document():
|
20 |
logger.info('Carregando arquivo no qual será baseado o RAG.')
|
21 |
with open('train.txt', 'r') as f:
|
22 |
data = f.read()
|
23 |
|
24 |
logger.info('Representando o documento utilizando o LangChainDocument.')
|
25 |
raw_database = LangChainDocument(page_content=data)
|
26 |
+
return raw_database
|
27 |
|
28 |
+
|
29 |
+
def generate_chunks(raw_database):
|
30 |
MARKDOWN_SEPARATORS = [
|
31 |
"\n#{1,6} ",
|
32 |
"```\n",
|
|
|
49 |
embedding_model = HuggingFaceEmbeddings(
|
50 |
model_name=embedding_model_name,
|
51 |
multi_process=True,
|
52 |
+
model_kwargs={"device": "cuda"}, # TODO: AJUSTAR DEPOIS
|
53 |
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
54 |
)
|
55 |
|
56 |
+
return process_data, embedding_model
|
57 |
+
|
58 |
+
|
59 |
+
def build_vector_database():
|
60 |
+
raw_database = load_document()
|
61 |
+
process_data, embedding_model = generate_chunks(raw_database)
|
62 |
+
|
63 |
logger.info('Criação da base de dados vetorial (em memória).')
|
64 |
vectors = FAISS.from_documents(process_data, embedding_model)
|
65 |
+
return vectors
|
66 |
+
|
67 |
+
|
68 |
+
def load_model():
|
69 |
+
load_dotenv()
|
70 |
+
login(token=os.getenv('HF_TOKEN'))
|
71 |
+
time.sleep(2)
|
72 |
|
73 |
# model_name = "meta-llama/Llama-3.2-1B"
|
74 |
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
|
|
97 |
)
|
98 |
logger.info(f'Modelo {model_name} carregado com sucesso.')
|
99 |
|
100 |
+
return llm_model
|
101 |
+
|
102 |
+
|
103 |
+
def get_answer(question, use_context=True):
|
104 |
+
vectors = build_vector_database()
|
105 |
+
llm_model = load_model()
|
106 |
+
|
107 |
+
if use_context:
|
108 |
+
prompt = """
|
109 |
+
<|system|>
|
110 |
+
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
111 |
+
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
112 |
+
Respond only to the question asked.
|
113 |
+
|
114 |
+
<|user|>
|
115 |
+
Context:
|
116 |
+
{}
|
117 |
+
---
|
118 |
+
Here is the question you need to answer.
|
119 |
+
|
120 |
+
Question: {}
|
121 |
+
---
|
122 |
+
<|assistant|>
|
123 |
+
"""
|
124 |
+
|
125 |
+
search_results = vectors.similarity_search(question, k=3)
|
126 |
+
logger.info('Contexto: ')
|
127 |
+
for i, search_result in enumerate(search_results):
|
128 |
+
logger.info(f"{i + 1}) {search_result.page_content}")
|
129 |
+
|
130 |
+
context = " ".join([search_result.page_content for search_result in search_results])
|
131 |
+
|
132 |
+
final_prompt = prompt.format(context, question)
|
133 |
+
logger.info(f'Prompt final: \n{final_prompt}\n')
|
134 |
+
answer = llm_model(final_prompt)
|
135 |
+
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
|
136 |
+
|
137 |
+
else:
|
138 |
+
prompt = """
|
139 |
+
<|system|>
|
140 |
+
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
141 |
+
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
142 |
+
Respond only to the question asked.
|
143 |
+
|
144 |
+
<|user|>
|
145 |
+
---
|
146 |
+
Here is the question you need to answer.
|
147 |
+
|
148 |
+
Question: {}
|
149 |
+
---
|
150 |
+
<|assistant|>
|
151 |
+
"""
|
152 |
+
|
153 |
+
final_prompt = prompt.format(question)
|
154 |
+
logger.info(f'Prompt final: \n{final_prompt}\n')
|
155 |
+
answer = llm_model(final_prompt)
|
156 |
+
logger.info(f"Resposta da IA: {answer[0]['generated_text']}")
|
157 |
+
|
158 |
+
return answer[0]['generated_text']
|
rag_test_bkp.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
from langchain.docstore.document import Document as LangChainDocument
|
3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from huggingface_hub import login
|
7 |
+
from loguru import logger
|
8 |
+
from transformers import pipeline
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
11 |
+
import os
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
load_dotenv()
|
17 |
+
logger.info('Carregando arquivo no qual será baseado o RAG.')
|
18 |
+
with open('train.txt', 'r') as f:
|
19 |
+
data = f.read()
|
20 |
+
|
21 |
+
logger.info('Representando o documento utilizando o LangChainDocument.')
|
22 |
+
raw_database = LangChainDocument(page_content=data)
|
23 |
+
|
24 |
+
MARKDOWN_SEPARATORS = [
|
25 |
+
"\n#{1,6} ",
|
26 |
+
"```\n",
|
27 |
+
"\n\\*\\*\\*+\n",
|
28 |
+
"\n---+\n",
|
29 |
+
"\n___+\n",
|
30 |
+
"\n\n",
|
31 |
+
"\n",
|
32 |
+
" ",
|
33 |
+
"",
|
34 |
+
]
|
35 |
+
|
36 |
+
logger.info('Quebrando o documento para a criação dos chunks.')
|
37 |
+
splitter = RecursiveCharacterTextSplitter(separators=MARKDOWN_SEPARATORS, chunk_size=1000, chunk_overlap=100)
|
38 |
+
process_data = splitter.split_documents([raw_database])
|
39 |
+
process_data = process_data[:5] # TODO: REMOVER DEPOIS
|
40 |
+
|
41 |
+
embedding_model_name = "thenlper/gte-small"
|
42 |
+
logger.info(f'Definição do modelo de embeddings: {embedding_model_name}.')
|
43 |
+
embedding_model = HuggingFaceEmbeddings(
|
44 |
+
model_name=embedding_model_name,
|
45 |
+
multi_process=True,
|
46 |
+
model_kwargs={"device": "cpu"}, # TODO: AJUSTAR DEPOIS
|
47 |
+
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
48 |
+
)
|
49 |
+
|
50 |
+
logger.info('Criação da base de dados vetorial (em memória).')
|
51 |
+
vectors = FAISS.from_documents(process_data, embedding_model)
|
52 |
+
|
53 |
+
# model_name = "meta-llama/Llama-3.2-1B"
|
54 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
55 |
+
# model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
56 |
+
# model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
57 |
+
logger.info(f'Carregamento do modelo de linguagem principal: {model_name}')
|
58 |
+
|
59 |
+
# bnb_config = BitsAndBytesConfig(
|
60 |
+
# load_in_4bit=True,
|
61 |
+
# bnb_4bit_use_double_quant=True,
|
62 |
+
# bnb_4bit_quant_type="nf4",
|
63 |
+
# bnb_4bit_compute_dtype=torch.bfloat16,
|
64 |
+
# )
|
65 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config)
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
+
|
69 |
+
llm_model = pipeline(
|
70 |
+
model=model,
|
71 |
+
tokenizer=tokenizer,
|
72 |
+
task="text-generation",
|
73 |
+
do_sample=True,
|
74 |
+
temperature=0.4,
|
75 |
+
repetition_penalty=1.1,
|
76 |
+
return_full_text=False,
|
77 |
+
max_new_tokens=500
|
78 |
+
)
|
79 |
+
logger.info(f'Modelo {model_name} carregado com sucesso.')
|
80 |
+
|
81 |
+
prompt = """
|
82 |
+
<|system|>
|
83 |
+
You are a helpful assistant that answers on medical questions based on the real information provided from different sources and in the context.
|
84 |
+
Give the rational and well written response. If you don't have proper info in the context, answer "I don't know"
|
85 |
+
Respond only to the question asked.
|
86 |
+
|
87 |
+
<|user|>
|
88 |
+
Context:
|
89 |
+
{}
|
90 |
+
---
|
91 |
+
Here is the question you need to answer.
|
92 |
+
|
93 |
+
Question: {}
|
94 |
+
---
|
95 |
+
<|assistant|>
|
96 |
+
"""
|
97 |
+
|
98 |
+
question = "What is Cardiogenic shock?"
|
99 |
+
search_results = vectors.similarity_search(question, k=3)
|
100 |
+
|
101 |
+
logger.info('Contexto: ')
|
102 |
+
for i, search_result in enumerate(search_results):
|
103 |
+
logger.info(f"{i + 1}) {search_result.page_content}")
|
104 |
+
|
105 |
+
context = " ".join([search_result.page_content for search_result in search_results])
|
106 |
+
final_prompt = prompt.format(context, question)
|
107 |
+
logger.info(f'\n{final_prompt}\n')
|
108 |
+
|
109 |
+
answer = llm_model(final_prompt)
|
110 |
+
|
111 |
+
logger.info("AI response: ", answer[0]['generated_text'])
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
multiprocessing.freeze_support()
|
116 |
+
access_token = os.getenv("ACCESS_TOKEN")
|
117 |
+
login(token=access_token)
|
118 |
+
logger.info('Login realizado com sucesso.')
|
119 |
+
main()
|