Spaces:
Runtime error
Runtime error
File size: 6,467 Bytes
0edd51d 8a50ffc 0edd51d 9529314 54bbeca 0edd51d 9529314 0edd51d 89539f7 0edd51d 89539f7 0edd51d 89539f7 0edd51d 9c865fe 9529314 6f1d8d0 1ea2fbb 0edd51d 1ea2fbb 89539f7 0edd51d 89539f7 0edd51d 54bbeca 0edd51d 8a50ffc 89539f7 9c865fe 54bbeca 89539f7 0edd51d 54bbeca 0edd51d 9c865fe 0edd51d 89539f7 0edd51d 89539f7 0edd51d 89539f7 f864b44 0edd51d 89539f7 0edd51d 89539f7 0edd51d 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 0edd51d f864b44 89539f7 f864b44 0edd51d f864b44 89539f7 255b59a 89539f7 f864b44 89539f7 f864b44 9529314 89539f7 0edd51d 89539f7 0edd51d 59bd43d 0edd51d 59bd43d 0edd51d 89539f7 0edd51d 89539f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
)
DESCRIPTION = "# humblemikey/PixelWave10"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"humblemikey/PixelWave10",
#vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
#variant="fp16",
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 4.0,
num_inference_steps_base: int = 40,
sampler: str = "DPM++ 2M SDE Karras",
progress=gr.Progress(track_tqdm=True)
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
#backup_scheduler = pipe.scheduler
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
if not use_negative_prompt:
negative_prompt = None # type: ignore
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=4.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=40,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|