File size: 6,467 Bytes
0edd51d
 
 
 
 
 
 
 
 
 
8a50ffc
0edd51d
9529314
54bbeca
 
 
 
 
 
 
0edd51d
9529314
0edd51d
89539f7
0edd51d
 
89539f7
 
 
0edd51d
89539f7
0edd51d
9c865fe
9529314
6f1d8d0
1ea2fbb
0edd51d
 
1ea2fbb
89539f7
0edd51d
 
 
 
 
 
 
89539f7
0edd51d
 
 
 
 
 
 
54bbeca
 
 
 
 
 
 
 
 
 
0edd51d
8a50ffc
89539f7
 
 
 
 
 
 
9c865fe
 
54bbeca
 
89539f7
0edd51d
 
54bbeca
 
 
0edd51d
 
 
9c865fe
 
 
 
 
 
 
 
 
 
 
0edd51d
 
89539f7
 
0edd51d
 
89539f7
0edd51d
89539f7
 
 
 
 
f864b44
0edd51d
 
89539f7
0edd51d
 
89539f7
0edd51d
 
89539f7
 
 
f864b44
89539f7
f864b44
89539f7
f864b44
89539f7
f864b44
 
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
 
 
 
 
255b59a
89539f7
f864b44
89539f7
f864b44
 
 
9529314
89539f7
0edd51d
89539f7
 
 
 
 
 
0edd51d
 
 
 
 
 
 
 
 
59bd43d
 
 
 
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
 
 
0edd51d
89539f7
0edd51d
89539f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python

from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
)

DESCRIPTION = "# humblemikey/PixelWave10"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "humblemikey/PixelWave10",
        #vae=vae,
        torch_dtype=torch.float16,
        use_safetensors=True,
        #variant="fp16",
    )

    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
    scheduler_factory_map = {
        "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True),
        "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True),
        "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"),
        "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
        "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config),
        "DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
    }
    return scheduler_factory_map.get(name, lambda: None)()

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 4.0,
    num_inference_steps_base: int = 40,
    sampler: str = "DPM++ 2M SDE Karras",
    progress=gr.Progress(track_tqdm=True)
) -> PIL.Image.Image:
    generator = torch.Generator().manual_seed(seed)

    #backup_scheduler = pipe.scheduler
    pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore

    return pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale_base,
        num_inference_steps=num_inference_steps_base,
        generator=generator,
        output_type="pil",
    ).images[0]
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="Guidance scale for base",
                minimum=1,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            num_inference_steps_base = gr.Slider(
                label="Number of inference steps for base",
                minimum=10,
                maximum=100,
                step=1,
                value=40,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale_base,
            num_inference_steps_base,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()