Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ import spaces
|
|
12 |
import torch
|
13 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
14 |
|
15 |
-
DESCRIPTION = "
|
16 |
if not torch.cuda.is_available():
|
17 |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
18 |
|
@@ -20,11 +20,10 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
20 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
21 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
22 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
23 |
-
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
24 |
|
25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
if torch.cuda.is_available():
|
27 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
28 |
pipe = DiffusionPipeline.from_pretrained(
|
29 |
"humblemikey/PixelWave10",
|
30 |
#vae=vae,
|
@@ -32,14 +31,6 @@ if torch.cuda.is_available():
|
|
32 |
use_safetensors=True,
|
33 |
#variant="fp16",
|
34 |
)
|
35 |
-
if ENABLE_REFINER:
|
36 |
-
refiner = DiffusionPipeline.from_pretrained(
|
37 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
38 |
-
vae=vae,
|
39 |
-
torch_dtype=torch.float16,
|
40 |
-
use_safetensors=True,
|
41 |
-
variant="fp16",
|
42 |
-
)
|
43 |
|
44 |
if ENABLE_CPU_OFFLOAD:
|
45 |
pipe.enable_model_cpu_offload()
|
@@ -47,13 +38,9 @@ if torch.cuda.is_available():
|
|
47 |
refiner.enable_model_cpu_offload()
|
48 |
else:
|
49 |
pipe.to(device)
|
50 |
-
if ENABLE_REFINER:
|
51 |
-
refiner.to(device)
|
52 |
|
53 |
if USE_TORCH_COMPILE:
|
54 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
55 |
-
if ENABLE_REFINER:
|
56 |
-
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
57 |
|
58 |
|
59 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
@@ -66,67 +53,31 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
66 |
def generate(
|
67 |
prompt: str,
|
68 |
negative_prompt: str = "",
|
69 |
-
prompt_2: str = "",
|
70 |
-
negative_prompt_2: str = "",
|
71 |
use_negative_prompt: bool = False,
|
72 |
-
use_prompt_2: bool = False,
|
73 |
-
use_negative_prompt_2: bool = False,
|
74 |
seed: int = 0,
|
75 |
width: int = 1024,
|
76 |
height: int = 1024,
|
77 |
-
guidance_scale_base: float =
|
78 |
-
|
79 |
-
num_inference_steps_base: int = 25,
|
80 |
-
num_inference_steps_refiner: int = 25,
|
81 |
-
apply_refiner: bool = False,
|
82 |
) -> PIL.Image.Image:
|
83 |
generator = torch.Generator().manual_seed(seed)
|
84 |
|
85 |
if not use_negative_prompt:
|
86 |
negative_prompt = None # type: ignore
|
87 |
-
if not use_prompt_2:
|
88 |
-
prompt_2 = None # type: ignore
|
89 |
-
if not use_negative_prompt_2:
|
90 |
-
negative_prompt_2 = None # type: ignore
|
91 |
-
|
92 |
-
if not apply_refiner:
|
93 |
-
return pipe(
|
94 |
-
prompt=prompt,
|
95 |
-
negative_prompt=negative_prompt,
|
96 |
-
prompt_2=prompt_2,
|
97 |
-
negative_prompt_2=negative_prompt_2,
|
98 |
-
width=width,
|
99 |
-
height=height,
|
100 |
-
guidance_scale=guidance_scale_base,
|
101 |
-
num_inference_steps=num_inference_steps_base,
|
102 |
-
generator=generator,
|
103 |
-
output_type="pil",
|
104 |
-
).images[0]
|
105 |
-
else:
|
106 |
-
latents = pipe(
|
107 |
-
prompt=prompt,
|
108 |
-
negative_prompt=negative_prompt,
|
109 |
-
prompt_2=prompt_2,
|
110 |
-
negative_prompt_2=negative_prompt_2,
|
111 |
-
width=width,
|
112 |
-
height=height,
|
113 |
-
guidance_scale=guidance_scale_base,
|
114 |
-
num_inference_steps=num_inference_steps_base,
|
115 |
-
generator=generator,
|
116 |
-
output_type="latent",
|
117 |
-
).images
|
118 |
-
image = refiner(
|
119 |
-
prompt=prompt,
|
120 |
-
negative_prompt=negative_prompt,
|
121 |
-
prompt_2=prompt_2,
|
122 |
-
negative_prompt_2=negative_prompt_2,
|
123 |
-
guidance_scale=guidance_scale_refiner,
|
124 |
-
num_inference_steps=num_inference_steps_refiner,
|
125 |
-
image=latents,
|
126 |
-
generator=generator,
|
127 |
-
).images[0]
|
128 |
-
return image
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
examples = [
|
132 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -154,27 +105,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
154 |
with gr.Accordion("Advanced options", open=False):
|
155 |
with gr.Row():
|
156 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
157 |
-
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
158 |
-
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
159 |
negative_prompt = gr.Text(
|
160 |
label="Negative prompt",
|
161 |
max_lines=1,
|
162 |
placeholder="Enter a negative prompt",
|
163 |
visible=False,
|
164 |
)
|
165 |
-
prompt_2 = gr.Text(
|
166 |
-
label="Prompt 2",
|
167 |
-
max_lines=1,
|
168 |
-
placeholder="Enter your prompt",
|
169 |
-
visible=False,
|
170 |
-
)
|
171 |
-
negative_prompt_2 = gr.Text(
|
172 |
-
label="Negative prompt 2",
|
173 |
-
max_lines=1,
|
174 |
-
placeholder="Enter a negative prompt",
|
175 |
-
visible=False,
|
176 |
-
)
|
177 |
-
|
178 |
seed = gr.Slider(
|
179 |
label="Seed",
|
180 |
minimum=0,
|
@@ -198,7 +134,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
198 |
step=32,
|
199 |
value=1024,
|
200 |
)
|
201 |
-
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
202 |
with gr.Row():
|
203 |
guidance_scale_base = gr.Slider(
|
204 |
label="Guidance scale for base",
|
@@ -214,21 +149,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
214 |
step=1,
|
215 |
value=25,
|
216 |
)
|
217 |
-
with gr.Row(visible=False) as refiner_params:
|
218 |
-
guidance_scale_refiner = gr.Slider(
|
219 |
-
label="Guidance scale for refiner",
|
220 |
-
minimum=1,
|
221 |
-
maximum=20,
|
222 |
-
step=0.1,
|
223 |
-
value=5.0,
|
224 |
-
)
|
225 |
-
num_inference_steps_refiner = gr.Slider(
|
226 |
-
label="Number of inference steps for refiner",
|
227 |
-
minimum=10,
|
228 |
-
maximum=100,
|
229 |
-
step=1,
|
230 |
-
value=25,
|
231 |
-
)
|
232 |
|
233 |
gr.Examples(
|
234 |
examples=examples,
|
@@ -244,34 +164,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
244 |
queue=False,
|
245 |
api_name=False,
|
246 |
)
|
247 |
-
use_prompt_2.change(
|
248 |
-
fn=lambda x: gr.update(visible=x),
|
249 |
-
inputs=use_prompt_2,
|
250 |
-
outputs=prompt_2,
|
251 |
-
queue=False,
|
252 |
-
api_name=False,
|
253 |
-
)
|
254 |
-
use_negative_prompt_2.change(
|
255 |
-
fn=lambda x: gr.update(visible=x),
|
256 |
-
inputs=use_negative_prompt_2,
|
257 |
-
outputs=negative_prompt_2,
|
258 |
-
queue=False,
|
259 |
-
api_name=False,
|
260 |
-
)
|
261 |
-
apply_refiner.change(
|
262 |
-
fn=lambda x: gr.update(visible=x),
|
263 |
-
inputs=apply_refiner,
|
264 |
-
outputs=refiner_params,
|
265 |
-
queue=False,
|
266 |
-
api_name=False,
|
267 |
-
)
|
268 |
|
269 |
gr.on(
|
270 |
triggers=[
|
271 |
prompt.submit,
|
272 |
negative_prompt.submit,
|
273 |
-
prompt_2.submit,
|
274 |
-
negative_prompt_2.submit,
|
275 |
run_button.click,
|
276 |
],
|
277 |
fn=randomize_seed_fn,
|
@@ -284,19 +181,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
284 |
inputs=[
|
285 |
prompt,
|
286 |
negative_prompt,
|
287 |
-
prompt_2,
|
288 |
-
negative_prompt_2,
|
289 |
use_negative_prompt,
|
290 |
-
use_prompt_2,
|
291 |
-
use_negative_prompt_2,
|
292 |
seed,
|
293 |
width,
|
294 |
height,
|
295 |
guidance_scale_base,
|
296 |
guidance_scale_refiner,
|
297 |
num_inference_steps_base,
|
298 |
-
num_inference_steps_refiner,
|
299 |
-
apply_refiner,
|
300 |
],
|
301 |
outputs=result,
|
302 |
api_name="run",
|
|
|
12 |
import torch
|
13 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
14 |
|
15 |
+
DESCRIPTION = "humblemikey/PixelWave10"
|
16 |
if not torch.cuda.is_available():
|
17 |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
18 |
|
|
|
20 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
21 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
22 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
|
|
23 |
|
24 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
25 |
if torch.cuda.is_available():
|
26 |
+
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
27 |
pipe = DiffusionPipeline.from_pretrained(
|
28 |
"humblemikey/PixelWave10",
|
29 |
#vae=vae,
|
|
|
31 |
use_safetensors=True,
|
32 |
#variant="fp16",
|
33 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
if ENABLE_CPU_OFFLOAD:
|
36 |
pipe.enable_model_cpu_offload()
|
|
|
38 |
refiner.enable_model_cpu_offload()
|
39 |
else:
|
40 |
pipe.to(device)
|
|
|
|
|
41 |
|
42 |
if USE_TORCH_COMPILE:
|
43 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
|
44 |
|
45 |
|
46 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
53 |
def generate(
|
54 |
prompt: str,
|
55 |
negative_prompt: str = "",
|
|
|
|
|
56 |
use_negative_prompt: bool = False,
|
|
|
|
|
57 |
seed: int = 0,
|
58 |
width: int = 1024,
|
59 |
height: int = 1024,
|
60 |
+
guidance_scale_base: float = 4.0,
|
61 |
+
num_inference_steps_base: int = 40,
|
|
|
|
|
|
|
62 |
) -> PIL.Image.Image:
|
63 |
generator = torch.Generator().manual_seed(seed)
|
64 |
|
65 |
if not use_negative_prompt:
|
66 |
negative_prompt = None # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
return pipe(
|
69 |
+
prompt=prompt,
|
70 |
+
negative_prompt=negative_prompt,
|
71 |
+
prompt_2=prompt_2,
|
72 |
+
negative_prompt_2=negative_prompt_2,
|
73 |
+
width=width,
|
74 |
+
height=height,
|
75 |
+
guidance_scale=guidance_scale_base,
|
76 |
+
num_inference_steps=num_inference_steps_base,
|
77 |
+
generator=generator,
|
78 |
+
output_type="pil",
|
79 |
+
).images[0]
|
80 |
+
return image
|
81 |
|
82 |
examples = [
|
83 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
105 |
with gr.Accordion("Advanced options", open=False):
|
106 |
with gr.Row():
|
107 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
|
|
|
|
108 |
negative_prompt = gr.Text(
|
109 |
label="Negative prompt",
|
110 |
max_lines=1,
|
111 |
placeholder="Enter a negative prompt",
|
112 |
visible=False,
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
seed = gr.Slider(
|
115 |
label="Seed",
|
116 |
minimum=0,
|
|
|
134 |
step=32,
|
135 |
value=1024,
|
136 |
)
|
|
|
137 |
with gr.Row():
|
138 |
guidance_scale_base = gr.Slider(
|
139 |
label="Guidance scale for base",
|
|
|
149 |
step=1,
|
150 |
value=25,
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
gr.Examples(
|
154 |
examples=examples,
|
|
|
164 |
queue=False,
|
165 |
api_name=False,
|
166 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
gr.on(
|
169 |
triggers=[
|
170 |
prompt.submit,
|
171 |
negative_prompt.submit,
|
|
|
|
|
172 |
run_button.click,
|
173 |
],
|
174 |
fn=randomize_seed_fn,
|
|
|
181 |
inputs=[
|
182 |
prompt,
|
183 |
negative_prompt,
|
|
|
|
|
184 |
use_negative_prompt,
|
|
|
|
|
185 |
seed,
|
186 |
width,
|
187 |
height,
|
188 |
guidance_scale_base,
|
189 |
guidance_scale_refiner,
|
190 |
num_inference_steps_base,
|
|
|
|
|
191 |
],
|
192 |
outputs=result,
|
193 |
api_name="run",
|