Spaces:
Sleeping
Sleeping
File size: 30,855 Bytes
7169e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# app.py - Production-ready Hugging Face Spaces deployment
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from pydantic import BaseModel, Field
import torch
import numpy as np
import pandas as pd
import json
import gc
import os
import logging
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
from huggingface_hub import hf_hub_download
from typing import List, Dict, Any, Optional
import uvicorn
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Clear cache
torch.cuda.empty_cache()
gc.collect()
PARAMS = ["N","P","K","temperature","pH","rainfall","humidity"]
# Acceptable ranges
IGNORE_RANGES = {
"N": (-10, 10),
"P": (-10, 10),
"K": (-10, 10),
"temperature": (-0.2, 0.2),
"pH": (-0.2, 0.2),
"humidity": (-5, 5),
"rainfall": (-15, 15)
}
def evaluate_problems_and_diffs(required: np.ndarray, given: np.ndarray):
problems = []
diff_dict = {}
for i, param in enumerate(PARAMS):
diff = given[i] - required[i]
low, high = IGNORE_RANGES[param]
if not (low <= diff <= high):
status = "deficiency" if diff < 0 else "excess"
problems.append(f"{param}_{status}")
diff_dict[param] = diff
return problems, diff_dict
class AgriculturalAdvisor:
def __init__(self):
self.model = None
self.tokenizer = None
self.df1 = None
self.df2 = None
self.template = None
self.model_loaded = False
self.data_loaded = False
try:
self.load_data()
self.load_model()
logger.info("✅ Agricultural Advisor initialized successfully!")
except Exception as e:
logger.error(f"❌ Failed to initialize: {str(e)}")
def load_data(self):
"""Load datasets with fallback options"""
try:
# Try to load datasets
if os.path.exists('Crop_recommendation.csv'):
self.df1 = pd.read_csv('Crop_recommendation.csv')
logger.info("✅ Crop_recommendation.csv loaded")
else:
# Create fallback dataset
logger.warning("⚠️ Crop_recommendation.csv not found, creating fallback")
self.df1 = self.create_fallback_dataset()
if os.path.exists('sensor_Crop_Dataset.csv'):
self.df2 = pd.read_csv('sensor_Crop_Dataset.csv')
self.df2.rename(columns={"crop": "label"}, inplace=True)
self.df2 = self.df2.drop(["soil","variety"], axis=1, errors='ignore')
logger.info("✅ sensor_Crop_Dataset.csv loaded")
else:
logger.warning("⚠️ sensor_Crop_Dataset.csv not found")
self.df2 = pd.DataFrame()
# Load template
if os.path.exists("crop_template.json"):
with open("crop_template.json") as f:
self.template = json.load(f)
logger.info("✅ Template loaded")
else:
logger.warning("⚠️ Template not found, creating fallback")
self.template = self.create_fallback_template()
self.data_loaded = True
except Exception as e:
logger.error(f"❌ Error loading data: {str(e)}")
# Create minimal fallbacks
self.df1 = self.create_fallback_dataset()
self.df2 = pd.DataFrame()
self.template = self.create_fallback_template()
self.data_loaded = True
def create_fallback_dataset(self):
"""Create minimal dataset for demo"""
return pd.DataFrame({
'N': [80, 75, 85, 70, 90],
'P': [40, 35, 45, 30, 50],
'K': [67, 60, 70, 55, 75],
'temperature': [25, 27, 23, 30, 20],
'pH': [7.0, 6.8, 7.2, 6.5, 7.5],
'rainfall': [200, 180, 220, 150, 250],
'humidity': [60, 65, 55, 70, 50],
'label': ['rice', 'wheat', 'maize', 'cotton', 'sugarcane']
})
def create_fallback_template(self):
"""Create minimal template"""
return {
"rice": {
"N_deficiency": {
"Description": "Nitrogen deficiency causes yellowing of older leaves and stunted growth",
"Homemade/Natural Remedies": "Apply compost, farmyard manure, or green manures",
"Commercial Suggestions": "Apply urea fertilizer in split doses",
"Cultural Practices": "Use alternate wetting and drying irrigation",
"Crop-Specific Notes": "Critical during tillering stage"
},
"P_deficiency": {
"Description": "Phosphorus deficiency causes dark green to purplish leaves",
"Homemade/Natural Remedies": "Apply bone meal or rock phosphate",
"Commercial Suggestions": "Apply superphosphate as basal dose",
"Cultural Practices": "Maintain soil pH near neutral",
"Crop-Specific Notes": "Important for root and flower development"
}
},
"wheat": {
"N_deficiency": {
"Description": "Nitrogen deficiency in wheat causes chlorosis and poor tillering",
"Homemade/Natural Remedies": "Apply compost and green manures",
"Commercial Suggestions": "Apply urea in 2-3 splits",
"Cultural Practices": "Ensure proper drainage",
"Crop-Specific Notes": "Critical at tillering and grain filling"
}
}
}
def load_model(self):
"""Load model with error handling"""
try:
# Model configuration
base_model = "unsloth/gemma-3-1b-it"
adapter_path = "./unified_crop_model" # Local path
# Check if running on CPU or GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"🖥️ Using device: {device}")
# Configure quantization only for GPU
if device == "cuda":
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype="bfloat16"
)
self.model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
else:
# CPU inference
self.model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float32,
trust_remote_code=True
)
# Try to load LoRA adapter
if os.path.exists(adapter_path):
try:
self.model = PeftModel.from_pretrained(
self.model,
adapter_path,
device_map="auto" if device == "cuda" else None
)
logger.info("✅ LoRA adapter loaded")
except Exception as e:
logger.warning(f"⚠️ Could not load LoRA adapter: {str(e)}")
logger.info("📝 Using base model without fine-tuning")
else:
logger.warning("⚠️ LoRA adapter not found, using base model")
# Load tokenizer
tokenizer_path = adapter_path if os.path.exists(adapter_path) else base_model
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
# Set pad token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model_loaded = True
logger.info("✅ Model loaded successfully!")
except Exception as e:
logger.error(f"❌ Failed to load model: {str(e)}")
self.model_loaded = False
def analyze_crop_conditions(self, crop, N, P, K, temp, humidity, pH, rainfall):
"""Analyze crop conditions with comprehensive error handling"""
if not self.data_loaded:
return "❌ Data not loaded properly. Please refresh the page."
if not self.model_loaded:
return "⚠️ Model not loaded. Providing basic analysis without AI recommendations."
try:
given = [N, P, K, temp, pH, rainfall, humidity]
# Find crop in datasets
if crop in self.df1['label'].values:
df = self.df1[self.df1['label']==crop]
elif not self.df2.empty and crop in self.df2['label'].values:
df = self.df2[self.df2['label']==crop]
else:
available_crops = list(self.df1['label'].unique())
return f"❌ Crop '{crop}' not found in database. Available crops: {', '.join(available_crops)}"
df_values = df.drop('label', axis=1)
df_array = np.array(df_values)
# MSE computation
mse_list = []
for row in df_array:
mse = np.mean((np.array(row) - np.array(given))**2)
mse_list.append(mse)
best_index = np.argmin(mse_list)
required = df_array[best_index].tolist()
problems, diff_dict = evaluate_problems_and_diffs(required, given)
if not problems:
return "✅ **Great!** No significant issues detected. Current conditions are within acceptable ranges for optimal growth."
# ==============================
# Detailed Default Template
# ==============================
default_template = {
"general": {
"nitrogen_deficiency": {
"Description": "Leaves appear pale or yellowish; growth may be slow.",
"Homemade/Natural Remedies": "Apply composted manure, cow dung, or green manure.",
"Commercial Suggestions": "Use balanced NPK fertilizer with higher nitrogen content.",
"Cultural Practices": "Rotate crops; avoid over-harvesting nitrogen-rich leaves.",
"Crop-Specific Notes": "Sensitive crops like leafy greens show symptoms faster."
},
"nitrogen_excess": {
"Description": "Excessive vegetative growth; flowering/fruiting may be delayed.",
"Homemade/Natural Remedies": "Limit nitrogen-rich organic inputs like fresh manure.",
"Commercial Suggestions": "Reduce nitrogen fertilizer; maintain balanced NPK ratios.",
"Cultural Practices": "Prune excess growth; monitor soil nutrient levels.",
"Crop-Specific Notes": "Fruit crops may produce fewer fruits if over-fertilized with nitrogen."
},
"phosphorus_deficiency": {
"Description": "Stunted growth; leaves may show dark green/purplish coloration.",
"Homemade/Natural Remedies": "Use bone meal, rock phosphate, or composted organic matter.",
"Commercial Suggestions": "Apply phosphorus-rich fertilizers like single superphosphate (SSP).",
"Cultural Practices": "Maintain soil pH around 6–7; avoid acidic soils.",
"Crop-Specific Notes": "Root crops may be most affected due to poor root development."
},
"phosphorus_excess": {
"Description": "Can interfere with micronutrient absorption (Zn, Fe).",
"Homemade/Natural Remedies": "Avoid adding extra phosphorus-containing amendments.",
"Commercial Suggestions": "Use balanced fertilizers; avoid repeated high P applications.",
"Cultural Practices": "Rotate crops to prevent phosphorus build-up.",
"Crop-Specific Notes": "Cereals are more sensitive to high phosphorus than legumes."
},
"potassium_deficiency": {
"Description": "Leaf edges turn brown, scorching; weak stems.",
"Homemade/Natural Remedies": "Add wood ash or composted banana peels.",
"Commercial Suggestions": "Apply potassium sulfate or muriate of potash.",
"Cultural Practices": "Ensure proper irrigation; avoid water stress.",
"Crop-Specific Notes": "Potato and tomato show clear leaf-edge symptoms."
},
"potassium_excess": {
"Description": "May reduce magnesium and calcium uptake.",
"Homemade/Natural Remedies": "Avoid excessive potassium-containing composts.",
"Commercial Suggestions": "Balance with magnesium/calcium fertilizers.",
"Cultural Practices": "Test soil regularly for K levels.",
"Crop-Specific Notes": "Leafy vegetables may show interveinal chlorosis if Mg is low."
},
"iron_deficiency": {
"Description": "Young leaves turn yellow with green veins (chlorosis).",
"Homemade/Natural Remedies": "Foliar spray with iron sulfate or iron chelates.",
"Commercial Suggestions": "Apply chelated iron to soil or foliage.",
"Cultural Practices": "Maintain soil pH below 7.5 for better uptake.",
"Crop-Specific Notes": "Fruit trees like apple and citrus are sensitive."
},
"iron_excess": {
"Description": "Can cause nutrient imbalance and toxicity.",
"Homemade/Natural Remedies": "Avoid iron-rich amendments in high-Fe soils.",
"Commercial Suggestions": "Test soil before adding iron fertilizers.",
"Cultural Practices": "Improve drainage in high-iron soils.",
"Crop-Specific Notes": "Rice paddies may tolerate slightly higher iron naturally."
},
"water_deficiency": {
"Description": "Wilting, leaf curl, and reduced yield.",
"Homemade/Natural Remedies": "Mulch soil to retain moisture; use organic matter.",
"Commercial Suggestions": "Implement drip or sprinkler irrigation.",
"Cultural Practices": "Schedule watering based on crop stage and weather.",
"Crop-Specific Notes": "Tomatoes and peppers are highly sensitive to water stress."
},
"water_excess": {
"Description": "Root rot, yellowing leaves, poor aeration.",
"Homemade/Natural Remedies": "Improve soil drainage using sand or organic matter.",
"Commercial Suggestions": "Raised beds; controlled irrigation.",
"Cultural Practices": "Avoid waterlogging; monitor soil moisture regularly.",
"Crop-Specific Notes": "Root crops like carrots and potatoes are prone to rot."
},
"pH_deficiency": {
"Description": "Soil too acidic (<5.5); stunted growth.",
"Homemade/Natural Remedies": "Apply wood ash or crushed eggshells.",
"Commercial Suggestions": "Use agricultural lime to raise pH.",
"Cultural Practices": "Test soil pH regularly; avoid acid-forming fertilizers.",
"Crop-Specific Notes": "Legumes prefer slightly acidic to neutral pH."
},
"pH_excess": {
"Description": "Soil too alkaline (>8); micronutrient deficiencies.",
"Homemade/Natural Remedies": "Incorporate organic matter like compost.",
"Commercial Suggestions": "Apply elemental sulfur to lower soil pH.",
"Cultural Practices": "Select tolerant crop varieties.",
"Crop-Specific Notes": "Tomatoes and spinach are sensitive to high pH."
},
"temperature_stress": {
"Description": "Too high or too low temperature affects growth and yield.",
"Homemade/Natural Remedies": "Shade nets or mulching to regulate temperature.",
"Commercial Suggestions": "Use protective covers or greenhouses.",
"Cultural Practices": "Plant at optimal seasonal windows.",
"Crop-Specific Notes": "Tomato, cucumber, and leafy greens are sensitive."
},
"pest_disease_issue": {
"Description": "Presence of pests or disease symptoms.",
"Homemade/Natural Remedies": "Neem oil, garlic extract, or organic sprays.",
"Commercial Suggestions": "Use approved pesticides or fungicides; follow IPM.",
"Cultural Practices": "Sanitation, crop rotation, resistant varieties.",
"Crop-Specific Notes": "Leafy vegetables and solanaceous crops need regular monitoring."
}
}
}
# selected issues dictionary
selected = {}
# Step 1: Check crop-specific template first
for prob in problems:
if prob in self.template.get(crop, {}):
selected[prob] = self.template[crop][prob]
# Step 2: If nothing found, use default template
if not selected:
for prob in problems:
if prob in default_template.get("general", {}):
selected[prob] = default_template["general"][prob]
# Step 3: If still nothing found, fallback message
if not selected:
issues_text = ', '.join(problems)
return f"⚠️ **Issues detected:** {issues_text}\n\n❗ No recommendations available even in the default template."
# Step 4: Build formatted output
context = f"Crop: {crop}\n"
for issue, details in selected.items():
context += f"\n## {issue.replace('_',' ').title()}\n"
for k, v in details.items():
context += f"💠 {k}: {v}\n"
# Generate AI recommendations if model available
ai_response = ""
if self.model_loaded:
try:
ai_response = self.generate_ai_recommendations(context)
except Exception as e:
logger.error(f"AI generation failed: {str(e)}")
ai_response = "AI recommendations temporarily unavailable."
# Format response
issues_summary = f"📊 **Issues Detected:** {', '.join(problems)}\n\n"
diff_summary = f"📈 **Parameter Differences:** {', '.join([f'{k}: {v:+.1f}' for k, v in diff_dict.items()])}\n\n"
# template_info = "📋 **Available Information:**\n"
# for issue, details in selected.items():
# template_info += f"\n**{issue.replace('_', ' ').title()}:**\n"
# template_info += f"• Description: {details.get('Description', 'N/A')}\n"
# template_info += f"• Natural Remedies: {details.get('Homemade/Natural Remedies', 'N/A')}\n"
# template_info += f"• Commercial Solutions: {details.get('Commercial Suggestions', 'N/A')}\n\n"
ai_section = f"🤖 **AI Recommendations:**\n{ai_response}\n" if ai_response else ""
return f"{issues_summary}{ai_section}"
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
return f"❌ Error during analysis: {str(e)}"
def generate_ai_recommendations(self, context):
"""Generate AI recommendations with proper error handling"""
try:
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful agronomy assistant. Based on soil conditions, suggest remedies for the detected crop issues."}]
},
{
"role": "user",
"content": [{"type": "text", "text": f"Here is reference info:\n{context}\n\nPlease give a concise recommendation."}]
}
]
inputs = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
return_dict=True,
).to(self.model.device)
with torch.no_grad():
output = self.model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True
)
# Decode response
response = self.tokenizer.decode(
output[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return response.strip()
except Exception as e:
logger.error(f"AI generation error: {str(e)}")
return f"AI recommendations temporarily unavailable due to: {str(e)}"
# Initialize advisor with error handling
logger.info("🚀 Initializing Agricultural Advisor...")
try:
advisor = AgriculturalAdvisor()
initialization_status = "✅ System Ready"
crops_available = list(advisor.df1['label'].unique())
except Exception as e:
logger.error(f"❌ Failed to initialize advisor: {str(e)}")
advisor = None
initialization_status = f"❌ Initialization Failed: {str(e)}"
crops_available = ["rice", "wheat", "maize"] # Fallback
# def get_crop_recommendations(crop, N, P, K, temperature, humidity, pH, rainfall):
# """Gradio interface function"""
# if advisor is None:
# return f"❌ System not initialized properly. Status: {initialization_status}"
# try:
# return advisor.analyze_crop_conditions(
# crop, N, P, K, temperature, humidity, pH, rainfall
# )
# except Exception as e:
# logger.error(f"Interface error: {str(e)}")
# return f"❌ Error processing request: {str(e)}"
## Pydantic models for API
class CropAnalysisRequest(BaseModel):
crop: str = Field(..., description="Name of the crop to analyze")
N: float = Field(..., ge=0, le=300, description="Nitrogen content (kg/ha)")
P: float = Field(..., ge=0, le=150, description="Phosphorus content (kg/ha)")
K: float = Field(..., ge=0, le=200, description="Potassium content (kg/ha)")
temperature: float = Field(..., ge=0, le=50, description="Temperature (°C)")
humidity: float = Field(..., ge=0, le=100, description="Humidity (%)")
pH: float = Field(..., ge=3, le=10, description="Soil pH level")
rainfall: float = Field(..., ge=0, le=2000, description="Rainfall (mm)")
class CropAnalysisResponse(BaseModel):
success: bool
message: str
recommendations: str
status: str
class SystemStatusResponse(BaseModel):
status: str
model_loaded: bool
data_loaded: bool
available_crops: List[str]
# Initialize advisor with error handling
logger.info("🚀 Initializing Agricultural Advisor...")
try:
advisor = AgriculturalAdvisor()
initialization_status = "✅ System Ready"
crops_available = list(advisor.df1['label'].unique())
except Exception as e:
logger.error(f"❌ Failed to initialize advisor: {str(e)}")
advisor = None
initialization_status = f"❌ Initialization Failed: {str(e)}"
crops_available = ["rice", "wheat", "maize"] # Fallback
# FastAPI app
app = FastAPI(
title="🌾 Agricultural Advisor API",
description="AI-powered agricultural advisor for crop recommendations based on soil and climate conditions",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure as needed for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_class=HTMLResponse)
async def root():
"""Serve basic HTML interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>🌾 Agricultural Advisor API</title>
<style>
body { font-family: Arial, sans-serif; margin: 40px; background: #f5f5f5; }
.container { max-width: 800px; margin: 0 auto; background: white; padding: 30px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); }
h1 { color: #2e7d32; text-align: center; }
.endpoint { background: #f8f9fa; padding: 15px; margin: 10px 0; border-radius: 5px; border-left: 4px solid #4caf50; }
.method { color: #1976d2; font-weight: bold; }
.example { background: #e8f5e8; padding: 10px; margin: 10px 0; border-radius: 5px; font-family: monospace; }
pre { overflow-x: auto; }
</style>
</head>
<body>
<div class="container">
<h1>🌾 Agricultural Advisor API</h1>
<p>AI-powered agricultural advisor for crop recommendations based on soil and climate conditions.</p>
<h2>📋 Available Endpoints</h2>
<div class="endpoint">
<span class="method">GET</span> <strong>/status</strong>
<p>Get system status and available crops</p>
</div>
<div class="endpoint">
<span class="method">POST</span> <strong>/analyze</strong>
<p>Analyze crop conditions and get recommendations</p>
<div class="example">
<strong>Example Request:</strong>
<pre>{
"crop": "rice",
"N": 80,
"P": 40,
"K": 67,
"temperature": 25,
"humidity": 60,
"pH": 7.0,
"rainfall": 200
}</pre>
</div>
</div>
<div class="endpoint">
<span class="method">GET</span> <strong>/crops</strong>
<p>Get list of available crops</p>
</div>
<h2>📖 Documentation</h2>
<p>Visit <a href="/docs">/docs</a> for interactive API documentation</p>
<p>Visit <a href="/redoc">/redoc</a> for alternative documentation</p>
<h2>🔧 System Status</h2>
<p><strong>Status:</strong> """ + initialization_status + """</p>
<p><strong>Available Crops:</strong> """ + ", ".join(crops_available) + """</p>
</div>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.get("/status", response_model=SystemStatusResponse)
async def get_system_status():
"""Get system status"""
if advisor is None:
return SystemStatusResponse(
status=initialization_status,
model_loaded=False,
data_loaded=False,
available_crops=crops_available
)
return SystemStatusResponse(
status=initialization_status,
model_loaded=advisor.model_loaded,
data_loaded=advisor.data_loaded,
available_crops=crops_available
)
@app.get("/crops")
async def get_available_crops():
"""Get list of available crops"""
return {"crops": crops_available}
@app.post("/analyze", response_model=CropAnalysisResponse)
async def analyze_crop(request: CropAnalysisRequest):
"""Analyze crop conditions and provide recommendations"""
if advisor is None:
raise HTTPException(
status_code=503,
detail=f"System not initialized properly. Status: {initialization_status}"
)
try:
# Validate crop
if request.crop not in crops_available:
raise HTTPException(
status_code=400,
detail=f"Crop '{request.crop}' not available. Available crops: {', '.join(crops_available)}"
)
# Analyze crop conditions using the same method as Gradio version
recommendations = advisor.analyze_crop_conditions(
request.crop, request.N, request.P, request.K,
request.temperature, request.humidity, request.pH, request.rainfall
)
# Determine status based on recommendations
if "❌" in recommendations:
status = "error"
elif "⚠️" in recommendations:
status = "warning"
elif "✅" in recommendations:
status = "success"
else:
status = "info"
return CropAnalysisResponse(
success=True,
message="Analysis completed successfully",
recommendations=recommendations,
status=status
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Error processing request: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"system_status": initialization_status,
"timestamp": pd.Timestamp.now().isoformat()
}
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
) |