Spaces:
Sleeping
Sleeping
Commit
·
7169e00
1
Parent(s):
6d869b0
Add application file
Browse files- Dockerfile +16 -0
- app.py +692 -0
- requirements.txt +14 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - Production-ready Hugging Face Spaces deployment
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from fastapi.staticfiles import StaticFiles
|
| 5 |
+
from fastapi.responses import HTMLResponse
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import json
|
| 11 |
+
import gc
|
| 12 |
+
import os
|
| 13 |
+
import logging
|
| 14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 15 |
+
from peft import PeftModel
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
from typing import List, Dict, Any, Optional
|
| 18 |
+
import uvicorn
|
| 19 |
+
|
| 20 |
+
# Setup logging
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
# Clear cache
|
| 25 |
+
torch.cuda.empty_cache()
|
| 26 |
+
gc.collect()
|
| 27 |
+
|
| 28 |
+
PARAMS = ["N","P","K","temperature","pH","rainfall","humidity"]
|
| 29 |
+
|
| 30 |
+
# Acceptable ranges
|
| 31 |
+
IGNORE_RANGES = {
|
| 32 |
+
"N": (-10, 10),
|
| 33 |
+
"P": (-10, 10),
|
| 34 |
+
"K": (-10, 10),
|
| 35 |
+
"temperature": (-0.2, 0.2),
|
| 36 |
+
"pH": (-0.2, 0.2),
|
| 37 |
+
"humidity": (-5, 5),
|
| 38 |
+
"rainfall": (-15, 15)
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
def evaluate_problems_and_diffs(required: np.ndarray, given: np.ndarray):
|
| 42 |
+
problems = []
|
| 43 |
+
diff_dict = {}
|
| 44 |
+
|
| 45 |
+
for i, param in enumerate(PARAMS):
|
| 46 |
+
diff = given[i] - required[i]
|
| 47 |
+
low, high = IGNORE_RANGES[param]
|
| 48 |
+
if not (low <= diff <= high):
|
| 49 |
+
status = "deficiency" if diff < 0 else "excess"
|
| 50 |
+
problems.append(f"{param}_{status}")
|
| 51 |
+
diff_dict[param] = diff
|
| 52 |
+
return problems, diff_dict
|
| 53 |
+
|
| 54 |
+
class AgriculturalAdvisor:
|
| 55 |
+
def __init__(self):
|
| 56 |
+
self.model = None
|
| 57 |
+
self.tokenizer = None
|
| 58 |
+
self.df1 = None
|
| 59 |
+
self.df2 = None
|
| 60 |
+
self.template = None
|
| 61 |
+
self.model_loaded = False
|
| 62 |
+
self.data_loaded = False
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
self.load_data()
|
| 66 |
+
self.load_model()
|
| 67 |
+
logger.info("✅ Agricultural Advisor initialized successfully!")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
logger.error(f"❌ Failed to initialize: {str(e)}")
|
| 70 |
+
|
| 71 |
+
def load_data(self):
|
| 72 |
+
"""Load datasets with fallback options"""
|
| 73 |
+
try:
|
| 74 |
+
# Try to load datasets
|
| 75 |
+
if os.path.exists('Crop_recommendation.csv'):
|
| 76 |
+
self.df1 = pd.read_csv('Crop_recommendation.csv')
|
| 77 |
+
logger.info("✅ Crop_recommendation.csv loaded")
|
| 78 |
+
else:
|
| 79 |
+
# Create fallback dataset
|
| 80 |
+
logger.warning("⚠️ Crop_recommendation.csv not found, creating fallback")
|
| 81 |
+
self.df1 = self.create_fallback_dataset()
|
| 82 |
+
|
| 83 |
+
if os.path.exists('sensor_Crop_Dataset.csv'):
|
| 84 |
+
self.df2 = pd.read_csv('sensor_Crop_Dataset.csv')
|
| 85 |
+
self.df2.rename(columns={"crop": "label"}, inplace=True)
|
| 86 |
+
self.df2 = self.df2.drop(["soil","variety"], axis=1, errors='ignore')
|
| 87 |
+
logger.info("✅ sensor_Crop_Dataset.csv loaded")
|
| 88 |
+
else:
|
| 89 |
+
logger.warning("⚠️ sensor_Crop_Dataset.csv not found")
|
| 90 |
+
self.df2 = pd.DataFrame()
|
| 91 |
+
|
| 92 |
+
# Load template
|
| 93 |
+
if os.path.exists("crop_template.json"):
|
| 94 |
+
with open("crop_template.json") as f:
|
| 95 |
+
self.template = json.load(f)
|
| 96 |
+
logger.info("✅ Template loaded")
|
| 97 |
+
else:
|
| 98 |
+
logger.warning("⚠️ Template not found, creating fallback")
|
| 99 |
+
self.template = self.create_fallback_template()
|
| 100 |
+
|
| 101 |
+
self.data_loaded = True
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"❌ Error loading data: {str(e)}")
|
| 105 |
+
# Create minimal fallbacks
|
| 106 |
+
self.df1 = self.create_fallback_dataset()
|
| 107 |
+
self.df2 = pd.DataFrame()
|
| 108 |
+
self.template = self.create_fallback_template()
|
| 109 |
+
self.data_loaded = True
|
| 110 |
+
|
| 111 |
+
def create_fallback_dataset(self):
|
| 112 |
+
"""Create minimal dataset for demo"""
|
| 113 |
+
return pd.DataFrame({
|
| 114 |
+
'N': [80, 75, 85, 70, 90],
|
| 115 |
+
'P': [40, 35, 45, 30, 50],
|
| 116 |
+
'K': [67, 60, 70, 55, 75],
|
| 117 |
+
'temperature': [25, 27, 23, 30, 20],
|
| 118 |
+
'pH': [7.0, 6.8, 7.2, 6.5, 7.5],
|
| 119 |
+
'rainfall': [200, 180, 220, 150, 250],
|
| 120 |
+
'humidity': [60, 65, 55, 70, 50],
|
| 121 |
+
'label': ['rice', 'wheat', 'maize', 'cotton', 'sugarcane']
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
def create_fallback_template(self):
|
| 125 |
+
"""Create minimal template"""
|
| 126 |
+
return {
|
| 127 |
+
"rice": {
|
| 128 |
+
"N_deficiency": {
|
| 129 |
+
"Description": "Nitrogen deficiency causes yellowing of older leaves and stunted growth",
|
| 130 |
+
"Homemade/Natural Remedies": "Apply compost, farmyard manure, or green manures",
|
| 131 |
+
"Commercial Suggestions": "Apply urea fertilizer in split doses",
|
| 132 |
+
"Cultural Practices": "Use alternate wetting and drying irrigation",
|
| 133 |
+
"Crop-Specific Notes": "Critical during tillering stage"
|
| 134 |
+
},
|
| 135 |
+
"P_deficiency": {
|
| 136 |
+
"Description": "Phosphorus deficiency causes dark green to purplish leaves",
|
| 137 |
+
"Homemade/Natural Remedies": "Apply bone meal or rock phosphate",
|
| 138 |
+
"Commercial Suggestions": "Apply superphosphate as basal dose",
|
| 139 |
+
"Cultural Practices": "Maintain soil pH near neutral",
|
| 140 |
+
"Crop-Specific Notes": "Important for root and flower development"
|
| 141 |
+
}
|
| 142 |
+
},
|
| 143 |
+
"wheat": {
|
| 144 |
+
"N_deficiency": {
|
| 145 |
+
"Description": "Nitrogen deficiency in wheat causes chlorosis and poor tillering",
|
| 146 |
+
"Homemade/Natural Remedies": "Apply compost and green manures",
|
| 147 |
+
"Commercial Suggestions": "Apply urea in 2-3 splits",
|
| 148 |
+
"Cultural Practices": "Ensure proper drainage",
|
| 149 |
+
"Crop-Specific Notes": "Critical at tillering and grain filling"
|
| 150 |
+
}
|
| 151 |
+
}
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
def load_model(self):
|
| 155 |
+
"""Load model with error handling"""
|
| 156 |
+
try:
|
| 157 |
+
# Model configuration
|
| 158 |
+
base_model = "unsloth/gemma-3-1b-it"
|
| 159 |
+
adapter_path = "./unified_crop_model" # Local path
|
| 160 |
+
|
| 161 |
+
# Check if running on CPU or GPU
|
| 162 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 163 |
+
logger.info(f"🖥️ Using device: {device}")
|
| 164 |
+
|
| 165 |
+
# Configure quantization only for GPU
|
| 166 |
+
if device == "cuda":
|
| 167 |
+
bnb_config = BitsAndBytesConfig(
|
| 168 |
+
load_in_4bit=True,
|
| 169 |
+
bnb_4bit_quant_type="nf4",
|
| 170 |
+
bnb_4bit_use_double_quant=True,
|
| 171 |
+
bnb_4bit_compute_dtype="bfloat16"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 175 |
+
base_model,
|
| 176 |
+
quantization_config=bnb_config,
|
| 177 |
+
device_map="auto",
|
| 178 |
+
trust_remote_code=True
|
| 179 |
+
)
|
| 180 |
+
else:
|
| 181 |
+
# CPU inference
|
| 182 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 183 |
+
base_model,
|
| 184 |
+
torch_dtype=torch.float32,
|
| 185 |
+
trust_remote_code=True
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Try to load LoRA adapter
|
| 189 |
+
if os.path.exists(adapter_path):
|
| 190 |
+
try:
|
| 191 |
+
self.model = PeftModel.from_pretrained(
|
| 192 |
+
self.model,
|
| 193 |
+
adapter_path,
|
| 194 |
+
device_map="auto" if device == "cuda" else None
|
| 195 |
+
)
|
| 196 |
+
logger.info("✅ LoRA adapter loaded")
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.warning(f"⚠️ Could not load LoRA adapter: {str(e)}")
|
| 199 |
+
logger.info("📝 Using base model without fine-tuning")
|
| 200 |
+
else:
|
| 201 |
+
logger.warning("⚠️ LoRA adapter not found, using base model")
|
| 202 |
+
|
| 203 |
+
# Load tokenizer
|
| 204 |
+
tokenizer_path = adapter_path if os.path.exists(adapter_path) else base_model
|
| 205 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
| 206 |
+
|
| 207 |
+
# Set pad token if not exists
|
| 208 |
+
if self.tokenizer.pad_token is None:
|
| 209 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 210 |
+
|
| 211 |
+
self.model_loaded = True
|
| 212 |
+
logger.info("✅ Model loaded successfully!")
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
logger.error(f"❌ Failed to load model: {str(e)}")
|
| 216 |
+
self.model_loaded = False
|
| 217 |
+
|
| 218 |
+
def analyze_crop_conditions(self, crop, N, P, K, temp, humidity, pH, rainfall):
|
| 219 |
+
"""Analyze crop conditions with comprehensive error handling"""
|
| 220 |
+
|
| 221 |
+
if not self.data_loaded:
|
| 222 |
+
return "❌ Data not loaded properly. Please refresh the page."
|
| 223 |
+
|
| 224 |
+
if not self.model_loaded:
|
| 225 |
+
return "⚠️ Model not loaded. Providing basic analysis without AI recommendations."
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
given = [N, P, K, temp, pH, rainfall, humidity]
|
| 229 |
+
|
| 230 |
+
# Find crop in datasets
|
| 231 |
+
if crop in self.df1['label'].values:
|
| 232 |
+
df = self.df1[self.df1['label']==crop]
|
| 233 |
+
elif not self.df2.empty and crop in self.df2['label'].values:
|
| 234 |
+
df = self.df2[self.df2['label']==crop]
|
| 235 |
+
else:
|
| 236 |
+
available_crops = list(self.df1['label'].unique())
|
| 237 |
+
return f"❌ Crop '{crop}' not found in database. Available crops: {', '.join(available_crops)}"
|
| 238 |
+
|
| 239 |
+
df_values = df.drop('label', axis=1)
|
| 240 |
+
df_array = np.array(df_values)
|
| 241 |
+
|
| 242 |
+
# MSE computation
|
| 243 |
+
mse_list = []
|
| 244 |
+
for row in df_array:
|
| 245 |
+
mse = np.mean((np.array(row) - np.array(given))**2)
|
| 246 |
+
mse_list.append(mse)
|
| 247 |
+
best_index = np.argmin(mse_list)
|
| 248 |
+
required = df_array[best_index].tolist()
|
| 249 |
+
|
| 250 |
+
problems, diff_dict = evaluate_problems_and_diffs(required, given)
|
| 251 |
+
|
| 252 |
+
if not problems:
|
| 253 |
+
return "✅ **Great!** No significant issues detected. Current conditions are within acceptable ranges for optimal growth."
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# ==============================
|
| 257 |
+
# Detailed Default Template
|
| 258 |
+
# ==============================
|
| 259 |
+
default_template = {
|
| 260 |
+
"general": {
|
| 261 |
+
"nitrogen_deficiency": {
|
| 262 |
+
"Description": "Leaves appear pale or yellowish; growth may be slow.",
|
| 263 |
+
"Homemade/Natural Remedies": "Apply composted manure, cow dung, or green manure.",
|
| 264 |
+
"Commercial Suggestions": "Use balanced NPK fertilizer with higher nitrogen content.",
|
| 265 |
+
"Cultural Practices": "Rotate crops; avoid over-harvesting nitrogen-rich leaves.",
|
| 266 |
+
"Crop-Specific Notes": "Sensitive crops like leafy greens show symptoms faster."
|
| 267 |
+
},
|
| 268 |
+
"nitrogen_excess": {
|
| 269 |
+
"Description": "Excessive vegetative growth; flowering/fruiting may be delayed.",
|
| 270 |
+
"Homemade/Natural Remedies": "Limit nitrogen-rich organic inputs like fresh manure.",
|
| 271 |
+
"Commercial Suggestions": "Reduce nitrogen fertilizer; maintain balanced NPK ratios.",
|
| 272 |
+
"Cultural Practices": "Prune excess growth; monitor soil nutrient levels.",
|
| 273 |
+
"Crop-Specific Notes": "Fruit crops may produce fewer fruits if over-fertilized with nitrogen."
|
| 274 |
+
},
|
| 275 |
+
"phosphorus_deficiency": {
|
| 276 |
+
"Description": "Stunted growth; leaves may show dark green/purplish coloration.",
|
| 277 |
+
"Homemade/Natural Remedies": "Use bone meal, rock phosphate, or composted organic matter.",
|
| 278 |
+
"Commercial Suggestions": "Apply phosphorus-rich fertilizers like single superphosphate (SSP).",
|
| 279 |
+
"Cultural Practices": "Maintain soil pH around 6–7; avoid acidic soils.",
|
| 280 |
+
"Crop-Specific Notes": "Root crops may be most affected due to poor root development."
|
| 281 |
+
},
|
| 282 |
+
"phosphorus_excess": {
|
| 283 |
+
"Description": "Can interfere with micronutrient absorption (Zn, Fe).",
|
| 284 |
+
"Homemade/Natural Remedies": "Avoid adding extra phosphorus-containing amendments.",
|
| 285 |
+
"Commercial Suggestions": "Use balanced fertilizers; avoid repeated high P applications.",
|
| 286 |
+
"Cultural Practices": "Rotate crops to prevent phosphorus build-up.",
|
| 287 |
+
"Crop-Specific Notes": "Cereals are more sensitive to high phosphorus than legumes."
|
| 288 |
+
},
|
| 289 |
+
"potassium_deficiency": {
|
| 290 |
+
"Description": "Leaf edges turn brown, scorching; weak stems.",
|
| 291 |
+
"Homemade/Natural Remedies": "Add wood ash or composted banana peels.",
|
| 292 |
+
"Commercial Suggestions": "Apply potassium sulfate or muriate of potash.",
|
| 293 |
+
"Cultural Practices": "Ensure proper irrigation; avoid water stress.",
|
| 294 |
+
"Crop-Specific Notes": "Potato and tomato show clear leaf-edge symptoms."
|
| 295 |
+
},
|
| 296 |
+
"potassium_excess": {
|
| 297 |
+
"Description": "May reduce magnesium and calcium uptake.",
|
| 298 |
+
"Homemade/Natural Remedies": "Avoid excessive potassium-containing composts.",
|
| 299 |
+
"Commercial Suggestions": "Balance with magnesium/calcium fertilizers.",
|
| 300 |
+
"Cultural Practices": "Test soil regularly for K levels.",
|
| 301 |
+
"Crop-Specific Notes": "Leafy vegetables may show interveinal chlorosis if Mg is low."
|
| 302 |
+
},
|
| 303 |
+
"iron_deficiency": {
|
| 304 |
+
"Description": "Young leaves turn yellow with green veins (chlorosis).",
|
| 305 |
+
"Homemade/Natural Remedies": "Foliar spray with iron sulfate or iron chelates.",
|
| 306 |
+
"Commercial Suggestions": "Apply chelated iron to soil or foliage.",
|
| 307 |
+
"Cultural Practices": "Maintain soil pH below 7.5 for better uptake.",
|
| 308 |
+
"Crop-Specific Notes": "Fruit trees like apple and citrus are sensitive."
|
| 309 |
+
},
|
| 310 |
+
"iron_excess": {
|
| 311 |
+
"Description": "Can cause nutrient imbalance and toxicity.",
|
| 312 |
+
"Homemade/Natural Remedies": "Avoid iron-rich amendments in high-Fe soils.",
|
| 313 |
+
"Commercial Suggestions": "Test soil before adding iron fertilizers.",
|
| 314 |
+
"Cultural Practices": "Improve drainage in high-iron soils.",
|
| 315 |
+
"Crop-Specific Notes": "Rice paddies may tolerate slightly higher iron naturally."
|
| 316 |
+
},
|
| 317 |
+
"water_deficiency": {
|
| 318 |
+
"Description": "Wilting, leaf curl, and reduced yield.",
|
| 319 |
+
"Homemade/Natural Remedies": "Mulch soil to retain moisture; use organic matter.",
|
| 320 |
+
"Commercial Suggestions": "Implement drip or sprinkler irrigation.",
|
| 321 |
+
"Cultural Practices": "Schedule watering based on crop stage and weather.",
|
| 322 |
+
"Crop-Specific Notes": "Tomatoes and peppers are highly sensitive to water stress."
|
| 323 |
+
},
|
| 324 |
+
"water_excess": {
|
| 325 |
+
"Description": "Root rot, yellowing leaves, poor aeration.",
|
| 326 |
+
"Homemade/Natural Remedies": "Improve soil drainage using sand or organic matter.",
|
| 327 |
+
"Commercial Suggestions": "Raised beds; controlled irrigation.",
|
| 328 |
+
"Cultural Practices": "Avoid waterlogging; monitor soil moisture regularly.",
|
| 329 |
+
"Crop-Specific Notes": "Root crops like carrots and potatoes are prone to rot."
|
| 330 |
+
},
|
| 331 |
+
"pH_deficiency": {
|
| 332 |
+
"Description": "Soil too acidic (<5.5); stunted growth.",
|
| 333 |
+
"Homemade/Natural Remedies": "Apply wood ash or crushed eggshells.",
|
| 334 |
+
"Commercial Suggestions": "Use agricultural lime to raise pH.",
|
| 335 |
+
"Cultural Practices": "Test soil pH regularly; avoid acid-forming fertilizers.",
|
| 336 |
+
"Crop-Specific Notes": "Legumes prefer slightly acidic to neutral pH."
|
| 337 |
+
},
|
| 338 |
+
"pH_excess": {
|
| 339 |
+
"Description": "Soil too alkaline (>8); micronutrient deficiencies.",
|
| 340 |
+
"Homemade/Natural Remedies": "Incorporate organic matter like compost.",
|
| 341 |
+
"Commercial Suggestions": "Apply elemental sulfur to lower soil pH.",
|
| 342 |
+
"Cultural Practices": "Select tolerant crop varieties.",
|
| 343 |
+
"Crop-Specific Notes": "Tomatoes and spinach are sensitive to high pH."
|
| 344 |
+
},
|
| 345 |
+
"temperature_stress": {
|
| 346 |
+
"Description": "Too high or too low temperature affects growth and yield.",
|
| 347 |
+
"Homemade/Natural Remedies": "Shade nets or mulching to regulate temperature.",
|
| 348 |
+
"Commercial Suggestions": "Use protective covers or greenhouses.",
|
| 349 |
+
"Cultural Practices": "Plant at optimal seasonal windows.",
|
| 350 |
+
"Crop-Specific Notes": "Tomato, cucumber, and leafy greens are sensitive."
|
| 351 |
+
},
|
| 352 |
+
"pest_disease_issue": {
|
| 353 |
+
"Description": "Presence of pests or disease symptoms.",
|
| 354 |
+
"Homemade/Natural Remedies": "Neem oil, garlic extract, or organic sprays.",
|
| 355 |
+
"Commercial Suggestions": "Use approved pesticides or fungicides; follow IPM.",
|
| 356 |
+
"Cultural Practices": "Sanitation, crop rotation, resistant varieties.",
|
| 357 |
+
"Crop-Specific Notes": "Leafy vegetables and solanaceous crops need regular monitoring."
|
| 358 |
+
}
|
| 359 |
+
}
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
# selected issues dictionary
|
| 364 |
+
selected = {}
|
| 365 |
+
|
| 366 |
+
# Step 1: Check crop-specific template first
|
| 367 |
+
for prob in problems:
|
| 368 |
+
if prob in self.template.get(crop, {}):
|
| 369 |
+
selected[prob] = self.template[crop][prob]
|
| 370 |
+
|
| 371 |
+
# Step 2: If nothing found, use default template
|
| 372 |
+
if not selected:
|
| 373 |
+
for prob in problems:
|
| 374 |
+
if prob in default_template.get("general", {}):
|
| 375 |
+
selected[prob] = default_template["general"][prob]
|
| 376 |
+
|
| 377 |
+
# Step 3: If still nothing found, fallback message
|
| 378 |
+
if not selected:
|
| 379 |
+
issues_text = ', '.join(problems)
|
| 380 |
+
return f"⚠️ **Issues detected:** {issues_text}\n\n❗ No recommendations available even in the default template."
|
| 381 |
+
|
| 382 |
+
# Step 4: Build formatted output
|
| 383 |
+
context = f"Crop: {crop}\n"
|
| 384 |
+
for issue, details in selected.items():
|
| 385 |
+
context += f"\n## {issue.replace('_',' ').title()}\n"
|
| 386 |
+
for k, v in details.items():
|
| 387 |
+
context += f"💠 {k}: {v}\n"
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
# Generate AI recommendations if model available
|
| 391 |
+
ai_response = ""
|
| 392 |
+
if self.model_loaded:
|
| 393 |
+
try:
|
| 394 |
+
ai_response = self.generate_ai_recommendations(context)
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"AI generation failed: {str(e)}")
|
| 397 |
+
ai_response = "AI recommendations temporarily unavailable."
|
| 398 |
+
|
| 399 |
+
# Format response
|
| 400 |
+
issues_summary = f"📊 **Issues Detected:** {', '.join(problems)}\n\n"
|
| 401 |
+
diff_summary = f"📈 **Parameter Differences:** {', '.join([f'{k}: {v:+.1f}' for k, v in diff_dict.items()])}\n\n"
|
| 402 |
+
|
| 403 |
+
# template_info = "📋 **Available Information:**\n"
|
| 404 |
+
# for issue, details in selected.items():
|
| 405 |
+
# template_info += f"\n**{issue.replace('_', ' ').title()}:**\n"
|
| 406 |
+
# template_info += f"• Description: {details.get('Description', 'N/A')}\n"
|
| 407 |
+
# template_info += f"• Natural Remedies: {details.get('Homemade/Natural Remedies', 'N/A')}\n"
|
| 408 |
+
# template_info += f"• Commercial Solutions: {details.get('Commercial Suggestions', 'N/A')}\n\n"
|
| 409 |
+
|
| 410 |
+
ai_section = f"🤖 **AI Recommendations:**\n{ai_response}\n" if ai_response else ""
|
| 411 |
+
|
| 412 |
+
return f"{issues_summary}{ai_section}"
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
logger.error(f"Analysis error: {str(e)}")
|
| 416 |
+
return f"❌ Error during analysis: {str(e)}"
|
| 417 |
+
|
| 418 |
+
def generate_ai_recommendations(self, context):
|
| 419 |
+
"""Generate AI recommendations with proper error handling"""
|
| 420 |
+
try:
|
| 421 |
+
messages = [
|
| 422 |
+
{
|
| 423 |
+
"role": "system",
|
| 424 |
+
"content": [{"type": "text", "text": "You are a helpful agronomy assistant. Based on soil conditions, suggest remedies for the detected crop issues."}]
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"role": "user",
|
| 428 |
+
"content": [{"type": "text", "text": f"Here is reference info:\n{context}\n\nPlease give a concise recommendation."}]
|
| 429 |
+
}
|
| 430 |
+
]
|
| 431 |
+
|
| 432 |
+
inputs = self.tokenizer.apply_chat_template(
|
| 433 |
+
messages,
|
| 434 |
+
add_generation_prompt=True,
|
| 435 |
+
return_tensors="pt",
|
| 436 |
+
tokenize=True,
|
| 437 |
+
return_dict=True,
|
| 438 |
+
).to(self.model.device)
|
| 439 |
+
|
| 440 |
+
with torch.no_grad():
|
| 441 |
+
output = self.model.generate(
|
| 442 |
+
**inputs,
|
| 443 |
+
max_new_tokens=200,
|
| 444 |
+
temperature=0.7,
|
| 445 |
+
top_p=0.9,
|
| 446 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 447 |
+
do_sample=True
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# Decode response
|
| 451 |
+
response = self.tokenizer.decode(
|
| 452 |
+
output[0][inputs['input_ids'].shape[1]:],
|
| 453 |
+
skip_special_tokens=True
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
return response.strip()
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
logger.error(f"AI generation error: {str(e)}")
|
| 460 |
+
return f"AI recommendations temporarily unavailable due to: {str(e)}"
|
| 461 |
+
|
| 462 |
+
# Initialize advisor with error handling
|
| 463 |
+
logger.info("🚀 Initializing Agricultural Advisor...")
|
| 464 |
+
try:
|
| 465 |
+
advisor = AgriculturalAdvisor()
|
| 466 |
+
initialization_status = "✅ System Ready"
|
| 467 |
+
crops_available = list(advisor.df1['label'].unique())
|
| 468 |
+
except Exception as e:
|
| 469 |
+
logger.error(f"❌ Failed to initialize advisor: {str(e)}")
|
| 470 |
+
advisor = None
|
| 471 |
+
initialization_status = f"❌ Initialization Failed: {str(e)}"
|
| 472 |
+
crops_available = ["rice", "wheat", "maize"] # Fallback
|
| 473 |
+
|
| 474 |
+
# def get_crop_recommendations(crop, N, P, K, temperature, humidity, pH, rainfall):
|
| 475 |
+
# """Gradio interface function"""
|
| 476 |
+
# if advisor is None:
|
| 477 |
+
# return f"❌ System not initialized properly. Status: {initialization_status}"
|
| 478 |
+
|
| 479 |
+
# try:
|
| 480 |
+
# return advisor.analyze_crop_conditions(
|
| 481 |
+
# crop, N, P, K, temperature, humidity, pH, rainfall
|
| 482 |
+
# )
|
| 483 |
+
# except Exception as e:
|
| 484 |
+
# logger.error(f"Interface error: {str(e)}")
|
| 485 |
+
# return f"❌ Error processing request: {str(e)}"
|
| 486 |
+
|
| 487 |
+
## Pydantic models for API
|
| 488 |
+
class CropAnalysisRequest(BaseModel):
|
| 489 |
+
crop: str = Field(..., description="Name of the crop to analyze")
|
| 490 |
+
N: float = Field(..., ge=0, le=300, description="Nitrogen content (kg/ha)")
|
| 491 |
+
P: float = Field(..., ge=0, le=150, description="Phosphorus content (kg/ha)")
|
| 492 |
+
K: float = Field(..., ge=0, le=200, description="Potassium content (kg/ha)")
|
| 493 |
+
temperature: float = Field(..., ge=0, le=50, description="Temperature (°C)")
|
| 494 |
+
humidity: float = Field(..., ge=0, le=100, description="Humidity (%)")
|
| 495 |
+
pH: float = Field(..., ge=3, le=10, description="Soil pH level")
|
| 496 |
+
rainfall: float = Field(..., ge=0, le=2000, description="Rainfall (mm)")
|
| 497 |
+
|
| 498 |
+
class CropAnalysisResponse(BaseModel):
|
| 499 |
+
success: bool
|
| 500 |
+
message: str
|
| 501 |
+
recommendations: str
|
| 502 |
+
status: str
|
| 503 |
+
|
| 504 |
+
class SystemStatusResponse(BaseModel):
|
| 505 |
+
status: str
|
| 506 |
+
model_loaded: bool
|
| 507 |
+
data_loaded: bool
|
| 508 |
+
available_crops: List[str]
|
| 509 |
+
|
| 510 |
+
# Initialize advisor with error handling
|
| 511 |
+
logger.info("🚀 Initializing Agricultural Advisor...")
|
| 512 |
+
try:
|
| 513 |
+
advisor = AgriculturalAdvisor()
|
| 514 |
+
initialization_status = "✅ System Ready"
|
| 515 |
+
crops_available = list(advisor.df1['label'].unique())
|
| 516 |
+
except Exception as e:
|
| 517 |
+
logger.error(f"❌ Failed to initialize advisor: {str(e)}")
|
| 518 |
+
advisor = None
|
| 519 |
+
initialization_status = f"❌ Initialization Failed: {str(e)}"
|
| 520 |
+
crops_available = ["rice", "wheat", "maize"] # Fallback
|
| 521 |
+
|
| 522 |
+
# FastAPI app
|
| 523 |
+
app = FastAPI(
|
| 524 |
+
title="🌾 Agricultural Advisor API",
|
| 525 |
+
description="AI-powered agricultural advisor for crop recommendations based on soil and climate conditions",
|
| 526 |
+
version="1.0.0"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
# CORS middleware
|
| 530 |
+
app.add_middleware(
|
| 531 |
+
CORSMiddleware,
|
| 532 |
+
allow_origins=["*"], # Configure as needed for production
|
| 533 |
+
allow_credentials=True,
|
| 534 |
+
allow_methods=["*"],
|
| 535 |
+
allow_headers=["*"],
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
@app.get("/", response_class=HTMLResponse)
|
| 539 |
+
async def root():
|
| 540 |
+
"""Serve basic HTML interface"""
|
| 541 |
+
html_content = """
|
| 542 |
+
<!DOCTYPE html>
|
| 543 |
+
<html>
|
| 544 |
+
<head>
|
| 545 |
+
<title>🌾 Agricultural Advisor API</title>
|
| 546 |
+
<style>
|
| 547 |
+
body { font-family: Arial, sans-serif; margin: 40px; background: #f5f5f5; }
|
| 548 |
+
.container { max-width: 800px; margin: 0 auto; background: white; padding: 30px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); }
|
| 549 |
+
h1 { color: #2e7d32; text-align: center; }
|
| 550 |
+
.endpoint { background: #f8f9fa; padding: 15px; margin: 10px 0; border-radius: 5px; border-left: 4px solid #4caf50; }
|
| 551 |
+
.method { color: #1976d2; font-weight: bold; }
|
| 552 |
+
.example { background: #e8f5e8; padding: 10px; margin: 10px 0; border-radius: 5px; font-family: monospace; }
|
| 553 |
+
pre { overflow-x: auto; }
|
| 554 |
+
</style>
|
| 555 |
+
</head>
|
| 556 |
+
<body>
|
| 557 |
+
<div class="container">
|
| 558 |
+
<h1>🌾 Agricultural Advisor API</h1>
|
| 559 |
+
<p>AI-powered agricultural advisor for crop recommendations based on soil and climate conditions.</p>
|
| 560 |
+
|
| 561 |
+
<h2>📋 Available Endpoints</h2>
|
| 562 |
+
|
| 563 |
+
<div class="endpoint">
|
| 564 |
+
<span class="method">GET</span> <strong>/status</strong>
|
| 565 |
+
<p>Get system status and available crops</p>
|
| 566 |
+
</div>
|
| 567 |
+
|
| 568 |
+
<div class="endpoint">
|
| 569 |
+
<span class="method">POST</span> <strong>/analyze</strong>
|
| 570 |
+
<p>Analyze crop conditions and get recommendations</p>
|
| 571 |
+
<div class="example">
|
| 572 |
+
<strong>Example Request:</strong>
|
| 573 |
+
<pre>{
|
| 574 |
+
"crop": "rice",
|
| 575 |
+
"N": 80,
|
| 576 |
+
"P": 40,
|
| 577 |
+
"K": 67,
|
| 578 |
+
"temperature": 25,
|
| 579 |
+
"humidity": 60,
|
| 580 |
+
"pH": 7.0,
|
| 581 |
+
"rainfall": 200
|
| 582 |
+
}</pre>
|
| 583 |
+
</div>
|
| 584 |
+
</div>
|
| 585 |
+
|
| 586 |
+
<div class="endpoint">
|
| 587 |
+
<span class="method">GET</span> <strong>/crops</strong>
|
| 588 |
+
<p>Get list of available crops</p>
|
| 589 |
+
</div>
|
| 590 |
+
|
| 591 |
+
<h2>📖 Documentation</h2>
|
| 592 |
+
<p>Visit <a href="/docs">/docs</a> for interactive API documentation</p>
|
| 593 |
+
<p>Visit <a href="/redoc">/redoc</a> for alternative documentation</p>
|
| 594 |
+
|
| 595 |
+
<h2>🔧 System Status</h2>
|
| 596 |
+
<p><strong>Status:</strong> """ + initialization_status + """</p>
|
| 597 |
+
<p><strong>Available Crops:</strong> """ + ", ".join(crops_available) + """</p>
|
| 598 |
+
</div>
|
| 599 |
+
</body>
|
| 600 |
+
</html>
|
| 601 |
+
"""
|
| 602 |
+
return HTMLResponse(content=html_content)
|
| 603 |
+
|
| 604 |
+
@app.get("/status", response_model=SystemStatusResponse)
|
| 605 |
+
async def get_system_status():
|
| 606 |
+
"""Get system status"""
|
| 607 |
+
if advisor is None:
|
| 608 |
+
return SystemStatusResponse(
|
| 609 |
+
status=initialization_status,
|
| 610 |
+
model_loaded=False,
|
| 611 |
+
data_loaded=False,
|
| 612 |
+
available_crops=crops_available
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
return SystemStatusResponse(
|
| 616 |
+
status=initialization_status,
|
| 617 |
+
model_loaded=advisor.model_loaded,
|
| 618 |
+
data_loaded=advisor.data_loaded,
|
| 619 |
+
available_crops=crops_available
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
@app.get("/crops")
|
| 623 |
+
async def get_available_crops():
|
| 624 |
+
"""Get list of available crops"""
|
| 625 |
+
return {"crops": crops_available}
|
| 626 |
+
|
| 627 |
+
@app.post("/analyze", response_model=CropAnalysisResponse)
|
| 628 |
+
async def analyze_crop(request: CropAnalysisRequest):
|
| 629 |
+
"""Analyze crop conditions and provide recommendations"""
|
| 630 |
+
|
| 631 |
+
if advisor is None:
|
| 632 |
+
raise HTTPException(
|
| 633 |
+
status_code=503,
|
| 634 |
+
detail=f"System not initialized properly. Status: {initialization_status}"
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
try:
|
| 638 |
+
# Validate crop
|
| 639 |
+
if request.crop not in crops_available:
|
| 640 |
+
raise HTTPException(
|
| 641 |
+
status_code=400,
|
| 642 |
+
detail=f"Crop '{request.crop}' not available. Available crops: {', '.join(crops_available)}"
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
# Analyze crop conditions using the same method as Gradio version
|
| 646 |
+
recommendations = advisor.analyze_crop_conditions(
|
| 647 |
+
request.crop, request.N, request.P, request.K,
|
| 648 |
+
request.temperature, request.humidity, request.pH, request.rainfall
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
# Determine status based on recommendations
|
| 652 |
+
if "❌" in recommendations:
|
| 653 |
+
status = "error"
|
| 654 |
+
elif "⚠️" in recommendations:
|
| 655 |
+
status = "warning"
|
| 656 |
+
elif "✅" in recommendations:
|
| 657 |
+
status = "success"
|
| 658 |
+
else:
|
| 659 |
+
status = "info"
|
| 660 |
+
|
| 661 |
+
return CropAnalysisResponse(
|
| 662 |
+
success=True,
|
| 663 |
+
message="Analysis completed successfully",
|
| 664 |
+
recommendations=recommendations,
|
| 665 |
+
status=status
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
except HTTPException:
|
| 669 |
+
raise
|
| 670 |
+
except Exception as e:
|
| 671 |
+
logger.error(f"Analysis error: {str(e)}")
|
| 672 |
+
raise HTTPException(
|
| 673 |
+
status_code=500,
|
| 674 |
+
detail=f"Error processing request: {str(e)}"
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
@app.get("/health")
|
| 678 |
+
async def health_check():
|
| 679 |
+
"""Health check endpoint"""
|
| 680 |
+
return {
|
| 681 |
+
"status": "healthy",
|
| 682 |
+
"system_status": initialization_status,
|
| 683 |
+
"timestamp": pd.Timestamp.now().isoformat()
|
| 684 |
+
}
|
| 685 |
+
|
| 686 |
+
if __name__ == "__main__":
|
| 687 |
+
uvicorn.run(
|
| 688 |
+
app,
|
| 689 |
+
host="0.0.0.0",
|
| 690 |
+
port=8000,
|
| 691 |
+
log_level="info"
|
| 692 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.4.0
|
| 2 |
+
transformers==4.44.0
|
| 3 |
+
peft==0.12.0
|
| 4 |
+
accelerate==0.33.0
|
| 5 |
+
numpy==1.26.4
|
| 6 |
+
pandas==2.2.2
|
| 7 |
+
gradio==4.42.0
|
| 8 |
+
huggingface-hub==0.24.0
|
| 9 |
+
requests==2.32.0
|
| 10 |
+
packaging==24.0
|
| 11 |
+
tqdm==4.66.0
|
| 12 |
+
# Skip CPU-incompatible packages
|
| 13 |
+
# bitsandbytes
|
| 14 |
+
# unsloth
|