File size: 18,465 Bytes
97d975e
 
2b1a636
 
97d975e
2b1a636
 
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
97d975e
 
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
 
 
 
2b1a636
 
 
 
 
 
 
97d975e
2b1a636
 
 
 
 
 
 
 
 
 
 
97d975e
 
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
 
2b1a636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d975e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import pandas as pd
import re
import csv

def update_scores(winner, loser, k_factor=100):
    score_difference = int(k_factor / (winner / loser))
    winner += score_difference
    loser -= score_difference
    return winner, loser

def vote_startup_criteria(criteria_df):
    if len(criteria_df) > 1:
        sample = criteria_df.sample(n=2)
        first_string = sample.iloc[0]["criteria"]
        second_string = sample.iloc[1]["criteria"]
        return f"Is '{first_string}' more important than '{second_string}'?", first_string, second_string, display_criteria_rankings(criteria_df)
    else:
        return "Add more criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)

def vote_startup_opponents(opponents_df, criteria_df):
    try:
        opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    except:
        opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
    if len(opponents_df) > 0:
        if len(opponents_df) > 10:
            slice_size = 4
            slice = int(len(opponents_df) / slice_size)
            sample = opponents_df[slice:(slice_size - 1) * slice].sample(frac=1).iloc[0]
            opponent, descriptor = sample["opponent"], sample["descriptor"]
        else:
            sample = opponents_df.sample(frac=1).iloc[0]
            opponent, descriptor = sample["opponent"], sample["descriptor"]
    if len(opponents_df) > 1:
        sample = opponents_df.sample(frac=1)
        comparison_opponent = sample.iloc[0]
        if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
            comparison_opponent = sample.iloc[1]
        first_df = opponents_df[opponents_df["opponent"] == opponent][opponents_df["descriptor"] == descriptor]
        first_string = first_df["opponent"].tolist()[0] + " - " + first_df["descriptor"].tolist()[0]
        second_df = comparison_opponent
        second_string = second_df["opponent"] + " - " + second_df["descriptor"]
        criteria = criteria_df.sample(n=1)["criteria"].values[0]
        return f"Which opponent better represents '{criteria}': '{descriptor} - {opponent}' or '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, criteria, display_rankings(opponents_df, criteria_df)
    else:
        return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)

def clean_string(string):
    string = string.strip().replace("  ", " ").lower()
    string = " ".join([x[0].upper() + x[1:] for x in string.split()])
    return string

def add_and_compare(descriptor, opponent, opponents_df, criteria_df):
    try:
        opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    except:
        opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
    if descriptor != "" and opponent != "":
        descriptor = clean_string(descriptor)
        opponent = clean_string(opponent)
        new_opponent = pd.DataFrame({'descriptor': [descriptor], 'opponent': [opponent]})
        for c in criteria_df["criteria"]:
            new_opponent[f"{c}_score"] = 1000
        new_opponent["overall_score"] = 1000
        opponents_df = pd.concat([opponents_df, new_opponent], ignore_index=True)
        opponents_df.to_csv("opponents_df.csv")
    opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    return "", "", display_rankings(opponents_df, criteria_df)

def update_ratings_pos(first_string, second_string, criteria, opponents_df, criteria_df):
    try:
        opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    except:
        opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
    if len(opponents_df) == 0:
        return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)
    if first_string != "":
        opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
        loser = opponents_df[opponents_df["combined"] == second_string]
        winner = opponents_df[opponents_df["combined"] == first_string]
        winner_score, loser_score = update_scores(winner[f"{criteria}_score"].values[0], loser[f"{criteria}_score"].values[0])
        opponents_df.at[winner.index[0], f"{criteria}_score"] = winner_score
        opponents_df.at[loser.index[0], f"{criteria}_score"] = loser_score
    opponents_df = calculate_overall_scores(opponents_df, criteria_df)
    opponents_df.to_csv("opponents_df.csv")
    return vote_startup_opponents(opponents_df, criteria_df)

def update_ratings_neg(first_string, second_string, criteria, opponents_df, criteria_df):
    try:
        opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    except:
        opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
    if len(opponents_df) == 0:
        return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)
    if first_string != "":
        opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
        loser = opponents_df[opponents_df["combined"] == first_string]
        winner = opponents_df[opponents_df["combined"] == second_string]
        winner_score, loser_score = update_scores(winner[f"{criteria}_score"].values[0], loser[f"{criteria}_score"].values[0])
        opponents_df.at[winner.index[0], f"{criteria}_score"] = winner_score
        opponents_df.at[loser.index[0], f"{criteria}_score"] = loser_score
    opponents_df = calculate_overall_scores(opponents_df, criteria_df)
    opponents_df.to_csv("opponents_df.csv")
    return vote_startup_opponents(opponents_df, criteria_df)

def display_rankings(opponents_df, criteria_df):
    opponents_df = opponents_df.sort_values(by='overall_score', ascending=False)
    opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    opponents_df.to_csv("opponents_df.csv")
    return opponents_df

def export_csv(opponents_df):
    save_df = opponents_df
    save_df.to_csv("opponents_df.csv")
    return "opponents_df.csv"

def import_csv(file, opponents_df, criteria_df):
    if file is not None:
        new_df = pd.read_csv(file)
        try:
            opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
        except:
            opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
        new_df = new_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
        opponents_df = pd.concat([opponents_df, new_df])
    opponents_df = opponents_df.drop_duplicates(subset=['descriptor', 'opponent'])
    return opponents_df

def remove_opponent(descriptor, opponent, opponents_df):
    descriptor = clean_string(descriptor)
    opponent = clean_string(opponent)
    opponents_df = opponents_df[~((opponents_df["descriptor"] == descriptor) & (opponents_df["opponent"] == opponent))]
    return opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]

def reset_rankings(opponents_df, criteria_df):
    for c in criteria_df["criteria"]:
        opponents_df[f"{c}_score"] = 1000
    opponents_df["overall_score"] = 1000
    opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
    return display_rankings(opponents_df, criteria_df)

def clear_rankings(opponents_df, criteria_df):
    opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
    return display_rankings(opponents_df, criteria_df)

def add_criteria(criteria, criteria_df):
    if criteria != "":
        criteria = clean_string(criteria)
        new_criteria = pd.DataFrame({'criteria': [criteria], 'score': [1000]})
        criteria_df = pd.concat([criteria_df, new_criteria], ignore_index=True)
        criteria_df.to_csv("criteria_df.csv")
    criteria_df = criteria_df[["score", "criteria"]]
    criteria_df = criteria_df.dropna()
    return "", display_criteria_rankings(criteria_df)

def remove_criteria(criteria, criteria_df):
    criteria = clean_string(criteria)
    criteria_df = criteria_df[criteria_df["criteria"] != criteria]
    return display_criteria_rankings(criteria_df)

def update_criteria_ratings_pos(first_string, second_string, criteria_df):
    if len(criteria_df) == 0:
        return "Add some criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)
    if first_string != "":
        loser = criteria_df[criteria_df["criteria"] == second_string]
        winner = criteria_df[criteria_df["criteria"] == first_string]
        winner_score, loser_score = update_scores(winner['score'].values[0], loser['score'].values[0])
        criteria_df.at[winner.index[0], 'score'] = winner_score
        criteria_df.at[loser.index[0], 'score'] = loser_score
    criteria_df = criteria_df.sort_values(by='score', ascending=False)
    criteria_df.to_csv("criteria_df.csv")
    return vote_startup_criteria(criteria_df)

def update_criteria_ratings_neg(first_string, second_string, criteria_df):
    if len(criteria_df) == 0:
        return "Add some criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)
    if first_string != "":
        loser = criteria_df[criteria_df["criteria"] == first_string]
        winner = criteria_df[criteria_df["criteria"] == second_string]
        winner_score, loser_score = update_scores(winner['score'].values[0], loser['score'].values[0])
        criteria_df.at[winner.index[0], 'score'] = winner_score
        criteria_df.at[loser.index[0], 'score'] = loser_score
    criteria_df = criteria_df.sort_values(by='score', ascending=False)
    criteria_df.to_csv("criteria_df.csv")
    return vote_startup_criteria(criteria_df)

def display_criteria_rankings(criteria_df):
    criteria_df = criteria_df.sort_values(by='score', ascending=False)
    criteria_df = criteria_df[["score", "criteria"]]
    criteria_df.to_csv("criteria_df.csv")
    return criteria_df

def calculate_overall_scores(opponents_df, criteria_df):
    criteria_scores = criteria_df.set_index("criteria")["score"]
    new_scores = []
    for _, row in opponents_df.iterrows():
        overall_score = 0
        total_weight = 0
        for c in criteria_df["criteria"]:
            weight = criteria_scores[c]
            score = row[f"{c}_score"]
            overall_score += weight * score
            total_weight += weight
        # opponents_df.at[row.name, "overall_score"] = overall_score / total_weight
        score = overall_score / total_weight
        new_scores.append(score)
    opponents_df["overall_score"] = new_scores
    return opponents_df

theme = gr.themes.Soft(primary_hue="red", secondary_hue="blue")

with gr.Blocks(theme=theme) as app:
    gr.Markdown(
        """## Preference-based Elo Ranker
        This tool helps you create **accurate rankings** of things based on your personal preferences.
        It does this by asking you questions comparing a random pair of your inputs, and then using your
        answers to calculate Elo scores for ranking.
        """
    )
    with gr.Tab("Criteria Ranking"):
        gr.Markdown(
            """### Rank Criteria
            Add and rank the criteria that will be used to evaluate the opponents.
            """
        )
        with gr.Row():
            criteria_input = gr.Textbox(label="Criteria")
            add_criteria_button = gr.Button("Add Criteria")
        with gr.Row():
            remove_criteria_input = gr.Textbox(label="Criteria")
            remove_criteria_button = gr.Button("Remove Criteria")
        criteria_df = pd.DataFrame(columns=['score', 'criteria'])
        criteria_rankings = gr.DataFrame(value=criteria_df, interactive=False, headers=["Score", "Criteria"])
        with gr.Row():
            criteria_compare_output = gr.Textbox("Add some criteria to start ranking!", label="Comparison", interactive=False)
            with gr.Row():
                criteria_yes_button = gr.Button("Yes", variant="secondary")
                criteria_no_button = gr.Button("No", variant="primary")
            with gr.Row():
                with gr.Column():
                    criteria_compare_index_1 = gr.Textbox(label="", interactive=False, visible=False)
                with gr.Column():
                    criteria_compare_index_2 = gr.Textbox(label="", interactive=False, visible=False)
            criteria_new_vote = gr.Button("New Vote")
        add_criteria_button.click(add_criteria, inputs=[criteria_input, criteria_rankings], outputs=[criteria_input, criteria_rankings])
        remove_criteria_button.click(remove_criteria, inputs=[remove_criteria_input, criteria_rankings], outputs=criteria_rankings)
        criteria_yes_button.click(update_criteria_ratings_pos, inputs=[criteria_compare_index_1, criteria_compare_index_2, criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])
        criteria_no_button.click(update_criteria_ratings_neg, inputs=[criteria_compare_index_1, criteria_compare_index_2, criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])
        criteria_new_vote.click(vote_startup_criteria, inputs=[criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])

    with gr.Tab("Opponent Ranking"):
        with gr.Row():
            previews_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
            previews = gr.DataFrame(value=previews_df, interactive=False, visible=False)
            with gr.Column():
                gr.Markdown(
                    """### Vote to Rank
                    """
                )
                with gr.Row():
                    compare_output = gr.Textbox("Add some options to start voting!", label="Comparison", interactive=False)
                    with gr.Row():
                        yes_button = gr.Button("1", variant="secondary")
                        no_button = gr.Button("2", variant="primary")
                    with gr.Row():
                        criteria_output = gr.Textbox(label="Criteria", interactive=False)
                new_vote = gr.Button("New Vote")
                with gr.Row():
                    with gr.Column():
                        compare_index_1 = gr.Textbox(label="", interactive=False, visible=False)
                    with gr.Column():
                        compare_index_2 = gr.Textbox(label="", interactive=False, visible=False)
            with gr.Column():
                gr.Markdown(
                    """### Rankings
                    """
                )
                opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
                rankings = gr.DataFrame(value=opponents_df, interactive=False, headers=["Descriptor", "Opponent"] + [f"{c} Score" for c in criteria_df["criteria"]] + ["Overall Score"])

        gr.Markdown(
            """### Add Opponents
            """
        )
        with gr.Row():
            descriptor_input = gr.Textbox(label="Descriptor")
            opponent_input = gr.Textbox(label="Opponent")
            add_button = gr.Button("Add Opponent")
        add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings, criteria_rankings], outputs=[descriptor_input, opponent_input, rankings])
        gr.Markdown(
            """### Remove Opponents
            """
        )
        with gr.Row():
            remove_descriptor_input = gr.Textbox(label="Descriptor")
            remove_opponent_input = gr.Textbox(label="Opponent")
            remove_button = gr.Button("Remove Opponent")
        remove_button.click(remove_opponent, inputs=[remove_descriptor_input, remove_opponent_input, rankings], outputs=rankings)

        gr.Markdown(
            """### Import and Export Rankings
            """
        )
        with gr.Row():
            import_button = gr.File(label="Import CSV", file_count="single")
            import_button.change(fn=import_csv, inputs=[import_button, rankings, criteria_rankings], outputs=[rankings])
            with gr.Column():
                export_link = gr.File(label="Download CSV", file_count="single")
                export_button = gr.Button("Export as CSV")
                export_button.click(fn=export_csv, inputs=[rankings], outputs=export_link)

        gr.Markdown("### Reset Data")
        with gr.Row():
            reset_button = gr.Button("Reset Scores")
            reset_button.click(reset_rankings, inputs=[rankings, criteria_rankings], outputs=rankings)
            clear_button = gr.Button("Clear Table", variant="primary")
            clear_button.click(clear_rankings, inputs=[rankings, criteria_rankings], outputs=rankings)

        yes_button.click(update_ratings_pos, inputs=[compare_index_1, compare_index_2, criteria_output, rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])
        no_button.click(update_ratings_neg, inputs=[compare_index_1, compare_index_2, criteria_output, rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])
        new_vote.click(vote_startup_opponents, inputs=[rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])

app.launch(share=False)