Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,324 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
|
|
3 |
|
4 |
-
def update_scores(
|
5 |
-
score_difference = k_factor / (
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
def
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
def
|
18 |
-
|
19 |
-
|
20 |
-
return
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return opponents_df
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
theme = gr.themes.Soft(primary_hue="red", secondary_hue="blue")
|
77 |
|
78 |
with gr.Blocks(theme=theme) as app:
|
79 |
-
gr.Markdown(
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
with gr.Tab("Criteria Ranking"):
|
82 |
-
gr.Markdown(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
90 |
criteria_df = pd.DataFrame(columns=['score', 'criteria'])
|
91 |
criteria_rankings = gr.DataFrame(value=criteria_df, interactive=False, headers=["Score", "Criteria"])
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
criteria_new_vote.click(
|
108 |
-
inputs=[criteria_rankings], outputs=[criteria_compare_output, criteria_input, criteria_input])
|
109 |
|
110 |
with gr.Tab("Opponent Ranking"):
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
app.launch(share=False)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import re
|
4 |
+
import csv
|
5 |
|
6 |
+
def update_scores(winner, loser, k_factor=100):
|
7 |
+
score_difference = int(k_factor / (winner / loser))
|
8 |
+
winner += score_difference
|
9 |
+
loser -= score_difference
|
10 |
+
return winner, loser
|
11 |
|
12 |
+
def vote_startup_criteria(criteria_df):
|
13 |
+
if len(criteria_df) > 1:
|
14 |
+
sample = criteria_df.sample(n=2)
|
15 |
+
first_string = sample.iloc[0]["criteria"]
|
16 |
+
second_string = sample.iloc[1]["criteria"]
|
17 |
+
return f"Is '{first_string}' more important than '{second_string}'?", first_string, second_string, display_criteria_rankings(criteria_df)
|
18 |
+
else:
|
19 |
+
return "Add more criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)
|
20 |
|
21 |
+
def vote_startup_opponents(opponents_df, criteria_df):
|
22 |
+
try:
|
23 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
24 |
+
except:
|
25 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
26 |
+
if len(opponents_df) > 0:
|
27 |
+
if len(opponents_df) > 10:
|
28 |
+
slice_size = 4
|
29 |
+
slice = int(len(opponents_df) / slice_size)
|
30 |
+
sample = opponents_df[slice:(slice_size - 1) * slice].sample(frac=1).iloc[0]
|
31 |
+
opponent, descriptor = sample["opponent"], sample["descriptor"]
|
32 |
+
else:
|
33 |
+
sample = opponents_df.sample(frac=1).iloc[0]
|
34 |
+
opponent, descriptor = sample["opponent"], sample["descriptor"]
|
35 |
+
if len(opponents_df) > 1:
|
36 |
+
sample = opponents_df.sample(frac=1)
|
37 |
+
comparison_opponent = sample.iloc[0]
|
38 |
+
if comparison_opponent['opponent'] == opponent and comparison_opponent['descriptor'] == descriptor:
|
39 |
+
comparison_opponent = sample.iloc[1]
|
40 |
+
first_df = opponents_df[opponents_df["opponent"] == opponent][opponents_df["descriptor"] == descriptor]
|
41 |
+
first_string = first_df["opponent"].tolist()[0] + " - " + first_df["descriptor"].tolist()[0]
|
42 |
+
second_df = comparison_opponent
|
43 |
+
second_string = second_df["opponent"] + " - " + second_df["descriptor"]
|
44 |
+
criteria = criteria_df.sample(n=1)["criteria"].values[0]
|
45 |
+
return f"Which opponent better represents '{criteria}': '{descriptor} - {opponent}' or '{comparison_opponent['descriptor']} - {comparison_opponent['opponent']}'?", first_string, second_string, criteria, display_rankings(opponents_df, criteria_df)
|
46 |
+
else:
|
47 |
+
return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)
|
48 |
|
49 |
+
def clean_string(string):
|
50 |
+
string = string.strip().replace(" ", " ").lower()
|
51 |
+
string = " ".join([x[0].upper() + x[1:] for x in string.split()])
|
52 |
+
return string
|
53 |
|
54 |
+
def add_and_compare(descriptor, opponent, opponents_df, criteria_df):
|
55 |
+
try:
|
56 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
57 |
+
except:
|
58 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
59 |
+
if descriptor != "" and opponent != "":
|
60 |
+
descriptor = clean_string(descriptor)
|
61 |
+
opponent = clean_string(opponent)
|
62 |
+
new_opponent = pd.DataFrame({'descriptor': [descriptor], 'opponent': [opponent]})
|
63 |
+
for c in criteria_df["criteria"]:
|
64 |
+
new_opponent[f"{c}_score"] = 1000
|
65 |
+
new_opponent["overall_score"] = 1000
|
66 |
+
opponents_df = pd.concat([opponents_df, new_opponent], ignore_index=True)
|
67 |
+
opponents_df.to_csv("opponents_df.csv")
|
68 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
69 |
+
return "", "", display_rankings(opponents_df, criteria_df)
|
70 |
|
71 |
+
def update_ratings_pos(first_string, second_string, criteria, opponents_df, criteria_df):
|
72 |
+
try:
|
73 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
74 |
+
except:
|
75 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
76 |
+
if len(opponents_df) == 0:
|
77 |
+
return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)
|
78 |
+
if first_string != "":
|
79 |
+
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
|
80 |
+
loser = opponents_df[opponents_df["combined"] == second_string]
|
81 |
+
winner = opponents_df[opponents_df["combined"] == first_string]
|
82 |
+
winner_score, loser_score = update_scores(winner[f"{criteria}_score"].values[0], loser[f"{criteria}_score"].values[0])
|
83 |
+
opponents_df.at[winner.index[0], f"{criteria}_score"] = winner_score
|
84 |
+
opponents_df.at[loser.index[0], f"{criteria}_score"] = loser_score
|
85 |
+
opponents_df = calculate_overall_scores(opponents_df, criteria_df)
|
86 |
+
opponents_df.to_csv("opponents_df.csv")
|
87 |
+
return vote_startup_opponents(opponents_df, criteria_df)
|
88 |
|
89 |
+
def update_ratings_neg(first_string, second_string, criteria, opponents_df, criteria_df):
|
90 |
+
try:
|
91 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
92 |
+
except:
|
93 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
94 |
+
if len(opponents_df) == 0:
|
95 |
+
return "Add some opponents to start voting!", "", "", "", display_rankings(opponents_df, criteria_df)
|
96 |
+
if first_string != "":
|
97 |
+
opponents_df["combined"] = opponents_df["opponent"] + " - " + opponents_df["descriptor"]
|
98 |
+
loser = opponents_df[opponents_df["combined"] == first_string]
|
99 |
+
winner = opponents_df[opponents_df["combined"] == second_string]
|
100 |
+
winner_score, loser_score = update_scores(winner[f"{criteria}_score"].values[0], loser[f"{criteria}_score"].values[0])
|
101 |
+
opponents_df.at[winner.index[0], f"{criteria}_score"] = winner_score
|
102 |
+
opponents_df.at[loser.index[0], f"{criteria}_score"] = loser_score
|
103 |
+
opponents_df = calculate_overall_scores(opponents_df, criteria_df)
|
104 |
+
opponents_df.to_csv("opponents_df.csv")
|
105 |
+
return vote_startup_opponents(opponents_df, criteria_df)
|
106 |
+
|
107 |
+
def display_rankings(opponents_df, criteria_df):
|
108 |
+
opponents_df = opponents_df.sort_values(by='overall_score', ascending=False)
|
109 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
110 |
+
opponents_df.to_csv("opponents_df.csv")
|
111 |
+
return opponents_df
|
112 |
|
113 |
+
def export_csv(opponents_df):
|
114 |
+
save_df = opponents_df
|
115 |
+
save_df.to_csv("opponents_df.csv")
|
116 |
+
return "opponents_df.csv"
|
117 |
|
118 |
+
def import_csv(file, opponents_df, criteria_df):
|
119 |
+
if file is not None:
|
120 |
+
new_df = pd.read_csv(file)
|
121 |
+
try:
|
122 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
123 |
+
except:
|
124 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
125 |
+
new_df = new_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
126 |
+
opponents_df = pd.concat([opponents_df, new_df])
|
127 |
+
opponents_df = opponents_df.drop_duplicates(subset=['descriptor', 'opponent'])
|
128 |
return opponents_df
|
129 |
|
130 |
+
def remove_opponent(descriptor, opponent, opponents_df):
|
131 |
+
descriptor = clean_string(descriptor)
|
132 |
+
opponent = clean_string(opponent)
|
133 |
+
opponents_df = opponents_df[~((opponents_df["descriptor"] == descriptor) & (opponents_df["opponent"] == opponent))]
|
134 |
+
return opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
135 |
+
|
136 |
+
def reset_rankings(opponents_df, criteria_df):
|
137 |
+
for c in criteria_df["criteria"]:
|
138 |
+
opponents_df[f"{c}_score"] = 1000
|
139 |
+
opponents_df["overall_score"] = 1000
|
140 |
+
opponents_df = opponents_df[["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"]]
|
141 |
+
return display_rankings(opponents_df, criteria_df)
|
142 |
+
|
143 |
+
def clear_rankings(opponents_df, criteria_df):
|
144 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
145 |
+
return display_rankings(opponents_df, criteria_df)
|
146 |
+
|
147 |
+
def add_criteria(criteria, criteria_df):
|
148 |
+
if criteria != "":
|
149 |
+
criteria = clean_string(criteria)
|
150 |
+
new_criteria = pd.DataFrame({'criteria': [criteria], 'score': [1000]})
|
151 |
+
criteria_df = pd.concat([criteria_df, new_criteria], ignore_index=True)
|
152 |
+
criteria_df.to_csv("criteria_df.csv")
|
153 |
+
criteria_df = criteria_df[["score", "criteria"]]
|
154 |
+
criteria_df = criteria_df.dropna()
|
155 |
+
return "", display_criteria_rankings(criteria_df)
|
156 |
+
|
157 |
+
def remove_criteria(criteria, criteria_df):
|
158 |
+
criteria = clean_string(criteria)
|
159 |
+
criteria_df = criteria_df[criteria_df["criteria"] != criteria]
|
160 |
+
return display_criteria_rankings(criteria_df)
|
161 |
+
|
162 |
+
def update_criteria_ratings_pos(first_string, second_string, criteria_df):
|
163 |
+
if len(criteria_df) == 0:
|
164 |
+
return "Add some criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)
|
165 |
+
if first_string != "":
|
166 |
+
loser = criteria_df[criteria_df["criteria"] == second_string]
|
167 |
+
winner = criteria_df[criteria_df["criteria"] == first_string]
|
168 |
+
winner_score, loser_score = update_scores(winner['score'].values[0], loser['score'].values[0])
|
169 |
+
criteria_df.at[winner.index[0], 'score'] = winner_score
|
170 |
+
criteria_df.at[loser.index[0], 'score'] = loser_score
|
171 |
+
criteria_df = criteria_df.sort_values(by='score', ascending=False)
|
172 |
+
criteria_df.to_csv("criteria_df.csv")
|
173 |
+
return vote_startup_criteria(criteria_df)
|
174 |
+
|
175 |
+
def update_criteria_ratings_neg(first_string, second_string, criteria_df):
|
176 |
+
if len(criteria_df) == 0:
|
177 |
+
return "Add some criteria to start ranking!", "", "", display_criteria_rankings(criteria_df)
|
178 |
+
if first_string != "":
|
179 |
+
loser = criteria_df[criteria_df["criteria"] == first_string]
|
180 |
+
winner = criteria_df[criteria_df["criteria"] == second_string]
|
181 |
+
winner_score, loser_score = update_scores(winner['score'].values[0], loser['score'].values[0])
|
182 |
+
criteria_df.at[winner.index[0], 'score'] = winner_score
|
183 |
+
criteria_df.at[loser.index[0], 'score'] = loser_score
|
184 |
+
criteria_df = criteria_df.sort_values(by='score', ascending=False)
|
185 |
+
criteria_df.to_csv("criteria_df.csv")
|
186 |
+
return vote_startup_criteria(criteria_df)
|
187 |
+
|
188 |
+
def display_criteria_rankings(criteria_df):
|
189 |
+
criteria_df = criteria_df.sort_values(by='score', ascending=False)
|
190 |
+
criteria_df = criteria_df[["score", "criteria"]]
|
191 |
+
criteria_df.to_csv("criteria_df.csv")
|
192 |
+
return criteria_df
|
193 |
+
|
194 |
+
def calculate_overall_scores(opponents_df, criteria_df):
|
195 |
+
criteria_scores = criteria_df.set_index("criteria")["score"]
|
196 |
+
new_scores = []
|
197 |
+
for _, row in opponents_df.iterrows():
|
198 |
+
overall_score = 0
|
199 |
+
total_weight = 0
|
200 |
+
for c in criteria_df["criteria"]:
|
201 |
+
weight = criteria_scores[c]
|
202 |
+
score = row[f"{c}_score"]
|
203 |
+
overall_score += weight * score
|
204 |
+
total_weight += weight
|
205 |
+
# opponents_df.at[row.name, "overall_score"] = overall_score / total_weight
|
206 |
+
score = overall_score / total_weight
|
207 |
+
new_scores.append(score)
|
208 |
+
opponents_df["overall_score"] = new_scores
|
209 |
+
return opponents_df
|
210 |
|
211 |
theme = gr.themes.Soft(primary_hue="red", secondary_hue="blue")
|
212 |
|
213 |
with gr.Blocks(theme=theme) as app:
|
214 |
+
gr.Markdown(
|
215 |
+
"""## Preference-based Elo Ranker
|
216 |
+
This tool helps you create **accurate rankings** of things based on your personal preferences.
|
217 |
+
It does this by asking you questions comparing a random pair of your inputs, and then using your
|
218 |
+
answers to calculate Elo scores for ranking.
|
219 |
+
"""
|
220 |
+
)
|
221 |
with gr.Tab("Criteria Ranking"):
|
222 |
+
gr.Markdown(
|
223 |
+
"""### Rank Criteria
|
224 |
+
Add and rank the criteria that will be used to evaluate the opponents.
|
225 |
+
"""
|
226 |
+
)
|
227 |
+
with gr.Row():
|
228 |
+
criteria_input = gr.Textbox(label="Criteria")
|
229 |
+
add_criteria_button = gr.Button("Add Criteria")
|
230 |
+
with gr.Row():
|
231 |
+
remove_criteria_input = gr.Textbox(label="Criteria")
|
232 |
+
remove_criteria_button = gr.Button("Remove Criteria")
|
233 |
criteria_df = pd.DataFrame(columns=['score', 'criteria'])
|
234 |
criteria_rankings = gr.DataFrame(value=criteria_df, interactive=False, headers=["Score", "Criteria"])
|
235 |
+
with gr.Row():
|
236 |
+
criteria_compare_output = gr.Textbox("Add some criteria to start ranking!", label="Comparison", interactive=False)
|
237 |
+
with gr.Row():
|
238 |
+
criteria_yes_button = gr.Button("Yes", variant="secondary")
|
239 |
+
criteria_no_button = gr.Button("No", variant="primary")
|
240 |
+
with gr.Row():
|
241 |
+
with gr.Column():
|
242 |
+
criteria_compare_index_1 = gr.Textbox(label="", interactive=False, visible=False)
|
243 |
+
with gr.Column():
|
244 |
+
criteria_compare_index_2 = gr.Textbox(label="", interactive=False, visible=False)
|
245 |
+
criteria_new_vote = gr.Button("New Vote")
|
246 |
+
add_criteria_button.click(add_criteria, inputs=[criteria_input, criteria_rankings], outputs=[criteria_input, criteria_rankings])
|
247 |
+
remove_criteria_button.click(remove_criteria, inputs=[remove_criteria_input, criteria_rankings], outputs=criteria_rankings)
|
248 |
+
criteria_yes_button.click(update_criteria_ratings_pos, inputs=[criteria_compare_index_1, criteria_compare_index_2, criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])
|
249 |
+
criteria_no_button.click(update_criteria_ratings_neg, inputs=[criteria_compare_index_1, criteria_compare_index_2, criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])
|
250 |
+
criteria_new_vote.click(vote_startup_criteria, inputs=[criteria_rankings], outputs=[criteria_compare_output, criteria_compare_index_1, criteria_compare_index_2, criteria_rankings])
|
|
|
251 |
|
252 |
with gr.Tab("Opponent Ranking"):
|
253 |
+
with gr.Row():
|
254 |
+
previews_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
255 |
+
previews = gr.DataFrame(value=previews_df, interactive=False, visible=False)
|
256 |
+
with gr.Column():
|
257 |
+
gr.Markdown(
|
258 |
+
"""### Vote to Rank
|
259 |
+
"""
|
260 |
+
)
|
261 |
+
with gr.Row():
|
262 |
+
compare_output = gr.Textbox("Add some options to start voting!", label="Comparison", interactive=False)
|
263 |
+
with gr.Row():
|
264 |
+
yes_button = gr.Button("1", variant="secondary")
|
265 |
+
no_button = gr.Button("2", variant="primary")
|
266 |
+
with gr.Row():
|
267 |
+
criteria_output = gr.Textbox(label="Criteria", interactive=False)
|
268 |
+
new_vote = gr.Button("New Vote")
|
269 |
+
with gr.Row():
|
270 |
+
with gr.Column():
|
271 |
+
compare_index_1 = gr.Textbox(label="", interactive=False, visible=False)
|
272 |
+
with gr.Column():
|
273 |
+
compare_index_2 = gr.Textbox(label="", interactive=False, visible=False)
|
274 |
+
with gr.Column():
|
275 |
+
gr.Markdown(
|
276 |
+
"""### Rankings
|
277 |
+
"""
|
278 |
+
)
|
279 |
+
opponents_df = pd.DataFrame(columns=["descriptor", "opponent"] + [f"{c}_score" for c in criteria_df["criteria"]] + ["overall_score"])
|
280 |
+
rankings = gr.DataFrame(value=opponents_df, interactive=False, headers=["Descriptor", "Opponent"] + [f"{c} Score" for c in criteria_df["criteria"]] + ["Overall Score"])
|
281 |
+
|
282 |
+
gr.Markdown(
|
283 |
+
"""### Add Opponents
|
284 |
+
"""
|
285 |
+
)
|
286 |
+
with gr.Row():
|
287 |
+
descriptor_input = gr.Textbox(label="Descriptor")
|
288 |
+
opponent_input = gr.Textbox(label="Opponent")
|
289 |
+
add_button = gr.Button("Add Opponent")
|
290 |
+
add_button.click(add_and_compare, inputs=[descriptor_input, opponent_input, rankings, criteria_rankings], outputs=[descriptor_input, opponent_input, rankings])
|
291 |
+
gr.Markdown(
|
292 |
+
"""### Remove Opponents
|
293 |
+
"""
|
294 |
+
)
|
295 |
+
with gr.Row():
|
296 |
+
remove_descriptor_input = gr.Textbox(label="Descriptor")
|
297 |
+
remove_opponent_input = gr.Textbox(label="Opponent")
|
298 |
+
remove_button = gr.Button("Remove Opponent")
|
299 |
+
remove_button.click(remove_opponent, inputs=[remove_descriptor_input, remove_opponent_input, rankings], outputs=rankings)
|
300 |
+
|
301 |
+
gr.Markdown(
|
302 |
+
"""### Import and Export Rankings
|
303 |
+
"""
|
304 |
+
)
|
305 |
+
with gr.Row():
|
306 |
+
import_button = gr.File(label="Import CSV", file_count="single")
|
307 |
+
import_button.change(fn=import_csv, inputs=[import_button, rankings, criteria_rankings], outputs=[rankings])
|
308 |
+
with gr.Column():
|
309 |
+
export_link = gr.File(label="Download CSV", file_count="single")
|
310 |
+
export_button = gr.Button("Export as CSV")
|
311 |
+
export_button.click(fn=export_csv, inputs=[rankings], outputs=export_link)
|
312 |
+
|
313 |
+
gr.Markdown("### Reset Data")
|
314 |
+
with gr.Row():
|
315 |
+
reset_button = gr.Button("Reset Scores")
|
316 |
+
reset_button.click(reset_rankings, inputs=[rankings, criteria_rankings], outputs=rankings)
|
317 |
+
clear_button = gr.Button("Clear Table", variant="primary")
|
318 |
+
clear_button.click(clear_rankings, inputs=[rankings, criteria_rankings], outputs=rankings)
|
319 |
+
|
320 |
+
yes_button.click(update_ratings_pos, inputs=[compare_index_1, compare_index_2, criteria_output, rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])
|
321 |
+
no_button.click(update_ratings_neg, inputs=[compare_index_1, compare_index_2, criteria_output, rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])
|
322 |
+
new_vote.click(vote_startup_opponents, inputs=[rankings, criteria_rankings], outputs=[compare_output, compare_index_1, compare_index_2, criteria_output, rankings])
|
323 |
|
324 |
app.launch(share=False)
|