Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, Query | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
app = FastAPI() | |
# Create offload folder if not exists | |
os.makedirs("./offload", exist_ok=True) | |
# Load tokenizer and model with offload_folder to prevent device_map error | |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-base") | |
model = AutoModelForCausalLM.from_pretrained( | |
"deepseek-ai/deepseek-llm-7b-base", | |
torch_dtype=torch.float16, | |
device_map="auto", | |
offload_folder="./offload" | |
) | |
def home(): | |
return { | |
"message": "β DeepSeek LLM is running. Use endpoint /ask?prompt=your+question" | |
} | |
def ask(prompt: str = Query(..., description="Your input prompt")): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.7) | |
reply = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"response": reply} | |