Spaces:
Sleeping
Sleeping
File size: 1,006 Bytes
e9c8243 8acea2e 00ff3dc c3f9463 4892ef5 00ff3dc 8acea2e 00ff3dc 8acea2e e9c8243 00ff3dc e9c8243 8acea2e e9c8243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from fastapi import FastAPI, Query
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
app = FastAPI()
# Create offload folder if not exists
os.makedirs("./offload", exist_ok=True)
# Load tokenizer and model with offload_folder to prevent device_map error
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-base")
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/deepseek-llm-7b-base",
torch_dtype=torch.float16,
device_map="auto",
offload_folder="./offload"
)
@app.get("/")
def home():
return {
"message": "✅ DeepSeek LLM is running. Use endpoint /ask?prompt=your+question"
}
@app.get("/ask")
def ask(prompt: str = Query(..., description="Your input prompt")):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.7)
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": reply}
|