Spaces:
Sleeping
Sleeping
import logging | |
from scripts.helper import adaptive_delay, load_dataset | |
from scripts.process_data import process_data | |
from scripts.groq_client import GroqClient | |
from scripts.prediction import predict | |
# Set up logging configuration | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Get prediction from LLM based on different dataset | |
def get_prediction_result(config, data_file_name): | |
results = [] | |
dataset = load_dataset(data_file_name) | |
# Create GroqClient instance for supported models | |
if config["model_name"] in config["models"]: | |
model = GroqClient(plm=config["model_name"]) | |
else: | |
logging.warning(f"Skipping unknown model: {config["model_name"]}") | |
return | |
# Iterate through dataset and process queries | |
for idx, instance in enumerate(dataset[:config["num_queries"]], start=0): | |
logging.info(f"Executing Query {idx + 1} for Model: {config["model_name"]}") | |
query, ans, docs = process_data(instance, config["noise_rate"], config["passage_num"], data_file_name) | |
# Retry mechanism for prediction | |
for attempt in range(1, config["retry_attempts"] + 1): | |
label, prediction, factlabel = predict(query, ans, docs, model, "Document:\n{DOCS} \n\nQuestion:\n{QUERY}", 0.7) | |
if prediction: # If response is not empty, break retry loop | |
break | |
adaptive_delay(attempt) | |
# Check correctness and log the result | |
is_correct = all(x == 1 for x in label) # True if all values are 1 (correct), else False | |
logging.info(f"Model Response: {prediction}") | |
logging.info(f"Correctness: {is_correct}") | |
# Save result for this query | |
instance['label'] = label | |
new_instance = { | |
'id': instance['id'], | |
'query': query, | |
'ans': ans, | |
'label': label, | |
'prediction': prediction, | |
'docs': docs, | |
'noise_rate': config["noise_rate"], | |
'factlabel': factlabel | |
} | |
results.append(new_instance) | |
return results | |