import logging from scripts.helper import adaptive_delay, load_dataset from scripts.process_data import process_data from scripts.groq_client import GroqClient from scripts.prediction import predict # Set up logging configuration logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Get prediction from LLM based on different dataset def get_prediction_result(config, data_file_name): results = [] dataset = load_dataset(data_file_name) # Create GroqClient instance for supported models if config["model_name"] in config["models"]: model = GroqClient(plm=config["model_name"]) else: logging.warning(f"Skipping unknown model: {config["model_name"]}") return # Iterate through dataset and process queries for idx, instance in enumerate(dataset[:config["num_queries"]], start=0): logging.info(f"Executing Query {idx + 1} for Model: {config["model_name"]}") query, ans, docs = process_data(instance, config["noise_rate"], config["passage_num"], data_file_name) # Retry mechanism for prediction for attempt in range(1, config["retry_attempts"] + 1): label, prediction, factlabel = predict(query, ans, docs, model, "Document:\n{DOCS} \n\nQuestion:\n{QUERY}", 0.7) if prediction: # If response is not empty, break retry loop break adaptive_delay(attempt) # Check correctness and log the result is_correct = all(x == 1 for x in label) # True if all values are 1 (correct), else False logging.info(f"Model Response: {prediction}") logging.info(f"Correctness: {is_correct}") # Save result for this query instance['label'] = label new_instance = { 'id': instance['id'], 'query': query, 'ans': ans, 'label': label, 'prediction': prediction, 'docs': docs, 'noise_rate': config["noise_rate"], 'factlabel': factlabel } results.append(new_instance) return results