File size: 8,687 Bytes
6ff6074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import io
import os
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader

# Load the call center logs CSV (assumed to be uploaded to the Space)
CSV_FILE_PATH = "call_center_logs.csv"

# Data cleanup function
def clean_data(df):
    original_count = len(df)
    cleanup_details = {
        'original': original_count,
        'nulls_removed': 0,
        'duplicates_removed': 0,
        'short_removed': 0,
        'malformed_removed': 0,
        'invalid_timestamps': 0
    }
    
    # Remove nulls in critical columns
    critical_columns = ['query', 'resolution', 'duration_minutes', 'satisfaction_score']
    null_rows = df[critical_columns].isna().any(axis=1)
    cleanup_details['nulls_removed'] = null_rows.sum()
    df = df[~null_rows]
    
    # Remove duplicates based on call_id
    duplicate_rows = df['call_id'].duplicated()
    cleanup_details['duplicates_removed'] = duplicate_rows.sum()
    df = df[~duplicate_rows]
    
    # Remove short queries
    short_rows = (df['query'].str.len() < 5) | (df['resolution'].str.len() < 5)
    cleanup_details['short_removed'] = short_rows.sum()
    df = df[~short_rows]
    
    # Remove malformed queries
    malformed_rows = df['query'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
    cleanup_details['malformed_removed'] = malformed_rows.sum()
    df = df[~malformed_rows]
    
    # Validate and clean timestamps
    invalid_timestamps = pd.to_datetime(df['timestamp'], errors='coerce').isna()
    cleanup_details['invalid_timestamps'] = invalid_timestamps.sum()
    df = df[~invalid_timestamps]
    
    # Standardize language (fill missing with 'en')
    df['language'] = df['language'].fillna('en')
    
    # Convert duration and satisfaction score to numeric
    df['duration_minutes'] = pd.to_numeric(df['duration_minutes'], errors='coerce')
    df['satisfaction_score'] = pd.to_numeric(df['satisfaction_score'], errors='coerce')
    
    cleaned_count = len(df)
    cleanup_details['cleaned'] = cleaned_count
    cleanup_details['removed'] = original_count - cleaned_count
    
    # Save cleaned CSV for SageMaker/Azure AI
    cleaned_path = 'cleaned_call_center_logs.csv'
    df.to_csv(cleaned_path, index=False)
    
    return df, cleanup_details, cleaned_path

# Statistical plotting function
def plot_statistics(df):
    # Plot 1: Distribution of Call Durations
    plt.figure(figsize=(10, 6))
    sns.histplot(df['duration_minutes'], bins=20, kde=True, color='skyblue')
    plt.title('Distribution of Call Durations')
    plt.xlabel('Duration (minutes)')
    plt.ylabel('Frequency')
    plt.savefig('duration_distribution.png')
    plt.close()
    
    # Plot 2: Satisfaction Scores by Agent
    plt.figure(figsize=(10, 6))
    sns.boxplot(x='agent_id', y='satisfaction_score', data=df, color='lightblue')
    plt.title('Satisfaction Scores by Agent')
    plt.xlabel('Agent ID')
    plt.ylabel('Satisfaction Score')
    plt.savefig('satisfaction_by_agent.png')
    plt.close()
    
    # Plot 3: Query Frequency by Language
    plt.figure(figsize=(10, 6))
    sns.countplot(x='language', data=df, color='skyblue')
    plt.title('Query Frequency by Language')
    plt.xlabel('Language')
    plt.ylabel('Number of Queries')
    plt.savefig('query_by_language.png')
    plt.close()
    
    return ['duration_distribution.png', 'satisfaction_by_agent.png', 'query_by_language.png']

# Generate PDF report
def generate_pdf_report(cleanup_details, plot_paths):
    pdf_path = 'data_analysis_report.pdf'
    c = canvas.Canvas(pdf_path, pagesize=letter)
    width, height = letter
    
    # Title
    c.setFont("Helvetica-Bold", 16)
    c.drawString(50, height - 50, "Call Center Data Analysis Report")
    
    # Cleanup Stats
    c.setFont("Helvetica", 12)
    y_position = height - 80
    c.drawString(50, y_position, "Data Cleanup Statistics:")
    y_position -= 20
    for key, value in cleanup_details.items():
        c.drawString(70, y_position, f"{key.replace('_', ' ').title()}: {value}")
        y_position -= 15
    
    # Add Plots
    y_position -= 30
    for plot_path in plot_paths:
        if os.path.exists(plot_path):
            img = ImageReader(plot_path)
            img_width, img_height = img.getSize()
            aspect = img_height / float(img_width)
            plot_width = 500
            plot_height = plot_width * aspect
            if y_position - plot_height < 50:
                c.showPage()
                y_position = height - 50
            c.drawImage(img, 50, y_position - plot_height, width=plot_width, height=plot_height)
            y_position -= plot_height + 20
    
    c.save()
    return pdf_path

# Main analysis function
def analyze_data():
    try:
        # Load the CSV
        df = pd.read_csv(CSV_FILE_PATH)
        
        # Clean the data
        cleaned_df, cleanup_details, cleaned_path = clean_data(df)
        
        # Generate statistical plots
        plot_paths = plot_statistics(cleaned_df)
        
        # Generate PDF report
        pdf_path = generate_pdf_report(cleanup_details, plot_paths)
        
        # Prepare cleanup stats for display
        cleanup_stats = "\n".join([f"{key.replace('_', ' ').title()}: {value}" for key, value in cleanup_details.items()])
        
        return (
            cleaned_df.head(50).to_html(),  # Display first 50 rows as a table
            cleanup_stats,
            plot_paths[0],  # Duration distribution
            plot_paths[1],  # Satisfaction by agent
            plot_paths[2],  # Query by language
            gr.File(value=cleaned_path, label="Download Cleaned CSV"),
            gr.File(value=pdf_path, label="Download PDF Report")
        )
    except Exception as e:
        return f"Error: {str(e)}", "", None, None, None, None, None

# Gradio interface
custom_css = """
body { 
    background: linear-gradient(135deg, #1a1a1a 0%, #2a2a2a 100%); 
    color: #e0e0e0; 
    font-family: 'Arial', sans-serif; 
    display: flex; 
    justify-content: center; 
    align-items: center; 
    min-height: 100vh; 
    margin: 0; 
}
.gr-box { 
    background: #3a3a3a; 
    border: 1px solid #4a4a4a; 
    border-radius: 8px; 
    padding: 20px; 
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); 
}
.gr-button { 
    background: #1e90ff; 
    color: white; 
    border-radius: 5px; 
    padding: 12px 20px; 
    margin: 8px 0; 
    width: 100%; 
    text-align: center; 
    transition: background 0.3s ease; 
    font-size: 16px; 
}
.gr-button:hover { 
    background: #1c86ee; 
    box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2); 
}
.gr-textbox { 
    background: #2f2f2f; 
    color: #e0e0e0; 
    border: 1px solid #4a4a4a; 
    border-radius: 5px; 
    margin-bottom: 15px; 
    font-size: 16px; 
    padding: 15px; 
    min-height: 120px; 
    width: 100%; 
}
.gr-image { 
    width: 100%; 
    height: auto; 
    max-height: 400px; 
}
#app-container { 
    max-width: 900px; 
    width: 100%; 
    padding: 20px; 
    background: #252525; 
    border-radius: 12px; 
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5); 
}
.text-center { 
    text-align: center; 
    margin-bottom: 20px; 
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Column(elem_id="app-container"):
        gr.Markdown("# Call Center Data Analysis", elem_classes="text-center")
        gr.Markdown("Analyze call center logs, view statistics, and export cleaned data for SageMaker/Azure AI.", elem_classes="text-center")
        
        # Button to trigger analysis
        analyze_button = gr.Button("Analyze Data")
        
        # Outputs
        raw_data_output = gr.HTML(label="Raw Data (First 50 Rows)")
        cleanup_stats_output = gr.Textbox(label="Data Cleanup Statistics")
        duration_plot_output = gr.Image(label="Distribution of Call Durations")
        satisfaction_plot_output = gr.Image(label="Satisfaction Scores by Agent")
        language_plot_output = gr.Image(label="Query Frequency by Language")
        csv_download = gr.File(label="Download Cleaned CSV")
        pdf_download = gr.File(label="Download PDF Report")
        
        # Connect the button to the analysis function
        analyze_button.click(
            fn=analyze_data,
            inputs=None,
            outputs=[
                raw_data_output,
                cleanup_stats_output,
                duration_plot_output,
                satisfaction_plot_output,
                language_plot_output,
                csv_download,
                pdf_download
            ]
        )

demo.launch()