Spaces:
Sleeping
Sleeping
File size: 8,687 Bytes
6ff6074 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import io
import os
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib.utils import ImageReader
# Load the call center logs CSV (assumed to be uploaded to the Space)
CSV_FILE_PATH = "call_center_logs.csv"
# Data cleanup function
def clean_data(df):
original_count = len(df)
cleanup_details = {
'original': original_count,
'nulls_removed': 0,
'duplicates_removed': 0,
'short_removed': 0,
'malformed_removed': 0,
'invalid_timestamps': 0
}
# Remove nulls in critical columns
critical_columns = ['query', 'resolution', 'duration_minutes', 'satisfaction_score']
null_rows = df[critical_columns].isna().any(axis=1)
cleanup_details['nulls_removed'] = null_rows.sum()
df = df[~null_rows]
# Remove duplicates based on call_id
duplicate_rows = df['call_id'].duplicated()
cleanup_details['duplicates_removed'] = duplicate_rows.sum()
df = df[~duplicate_rows]
# Remove short queries
short_rows = (df['query'].str.len() < 5) | (df['resolution'].str.len() < 5)
cleanup_details['short_removed'] = short_rows.sum()
df = df[~short_rows]
# Remove malformed queries
malformed_rows = df['query'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
cleanup_details['malformed_removed'] = malformed_rows.sum()
df = df[~malformed_rows]
# Validate and clean timestamps
invalid_timestamps = pd.to_datetime(df['timestamp'], errors='coerce').isna()
cleanup_details['invalid_timestamps'] = invalid_timestamps.sum()
df = df[~invalid_timestamps]
# Standardize language (fill missing with 'en')
df['language'] = df['language'].fillna('en')
# Convert duration and satisfaction score to numeric
df['duration_minutes'] = pd.to_numeric(df['duration_minutes'], errors='coerce')
df['satisfaction_score'] = pd.to_numeric(df['satisfaction_score'], errors='coerce')
cleaned_count = len(df)
cleanup_details['cleaned'] = cleaned_count
cleanup_details['removed'] = original_count - cleaned_count
# Save cleaned CSV for SageMaker/Azure AI
cleaned_path = 'cleaned_call_center_logs.csv'
df.to_csv(cleaned_path, index=False)
return df, cleanup_details, cleaned_path
# Statistical plotting function
def plot_statistics(df):
# Plot 1: Distribution of Call Durations
plt.figure(figsize=(10, 6))
sns.histplot(df['duration_minutes'], bins=20, kde=True, color='skyblue')
plt.title('Distribution of Call Durations')
plt.xlabel('Duration (minutes)')
plt.ylabel('Frequency')
plt.savefig('duration_distribution.png')
plt.close()
# Plot 2: Satisfaction Scores by Agent
plt.figure(figsize=(10, 6))
sns.boxplot(x='agent_id', y='satisfaction_score', data=df, color='lightblue')
plt.title('Satisfaction Scores by Agent')
plt.xlabel('Agent ID')
plt.ylabel('Satisfaction Score')
plt.savefig('satisfaction_by_agent.png')
plt.close()
# Plot 3: Query Frequency by Language
plt.figure(figsize=(10, 6))
sns.countplot(x='language', data=df, color='skyblue')
plt.title('Query Frequency by Language')
plt.xlabel('Language')
plt.ylabel('Number of Queries')
plt.savefig('query_by_language.png')
plt.close()
return ['duration_distribution.png', 'satisfaction_by_agent.png', 'query_by_language.png']
# Generate PDF report
def generate_pdf_report(cleanup_details, plot_paths):
pdf_path = 'data_analysis_report.pdf'
c = canvas.Canvas(pdf_path, pagesize=letter)
width, height = letter
# Title
c.setFont("Helvetica-Bold", 16)
c.drawString(50, height - 50, "Call Center Data Analysis Report")
# Cleanup Stats
c.setFont("Helvetica", 12)
y_position = height - 80
c.drawString(50, y_position, "Data Cleanup Statistics:")
y_position -= 20
for key, value in cleanup_details.items():
c.drawString(70, y_position, f"{key.replace('_', ' ').title()}: {value}")
y_position -= 15
# Add Plots
y_position -= 30
for plot_path in plot_paths:
if os.path.exists(plot_path):
img = ImageReader(plot_path)
img_width, img_height = img.getSize()
aspect = img_height / float(img_width)
plot_width = 500
plot_height = plot_width * aspect
if y_position - plot_height < 50:
c.showPage()
y_position = height - 50
c.drawImage(img, 50, y_position - plot_height, width=plot_width, height=plot_height)
y_position -= plot_height + 20
c.save()
return pdf_path
# Main analysis function
def analyze_data():
try:
# Load the CSV
df = pd.read_csv(CSV_FILE_PATH)
# Clean the data
cleaned_df, cleanup_details, cleaned_path = clean_data(df)
# Generate statistical plots
plot_paths = plot_statistics(cleaned_df)
# Generate PDF report
pdf_path = generate_pdf_report(cleanup_details, plot_paths)
# Prepare cleanup stats for display
cleanup_stats = "\n".join([f"{key.replace('_', ' ').title()}: {value}" for key, value in cleanup_details.items()])
return (
cleaned_df.head(50).to_html(), # Display first 50 rows as a table
cleanup_stats,
plot_paths[0], # Duration distribution
plot_paths[1], # Satisfaction by agent
plot_paths[2], # Query by language
gr.File(value=cleaned_path, label="Download Cleaned CSV"),
gr.File(value=pdf_path, label="Download PDF Report")
)
except Exception as e:
return f"Error: {str(e)}", "", None, None, None, None, None
# Gradio interface
custom_css = """
body {
background: linear-gradient(135deg, #1a1a1a 0%, #2a2a2a 100%);
color: #e0e0e0;
font-family: 'Arial', sans-serif;
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
}
.gr-box {
background: #3a3a3a;
border: 1px solid #4a4a4a;
border-radius: 8px;
padding: 20px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
}
.gr-button {
background: #1e90ff;
color: white;
border-radius: 5px;
padding: 12px 20px;
margin: 8px 0;
width: 100%;
text-align: center;
transition: background 0.3s ease;
font-size: 16px;
}
.gr-button:hover {
background: #1c86ee;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2);
}
.gr-textbox {
background: #2f2f2f;
color: #e0e0e0;
border: 1px solid #4a4a4a;
border-radius: 5px;
margin-bottom: 15px;
font-size: 16px;
padding: 15px;
min-height: 120px;
width: 100%;
}
.gr-image {
width: 100%;
height: auto;
max-height: 400px;
}
#app-container {
max-width: 900px;
width: 100%;
padding: 20px;
background: #252525;
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5);
}
.text-center {
text-align: center;
margin-bottom: 20px;
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# Call Center Data Analysis", elem_classes="text-center")
gr.Markdown("Analyze call center logs, view statistics, and export cleaned data for SageMaker/Azure AI.", elem_classes="text-center")
# Button to trigger analysis
analyze_button = gr.Button("Analyze Data")
# Outputs
raw_data_output = gr.HTML(label="Raw Data (First 50 Rows)")
cleanup_stats_output = gr.Textbox(label="Data Cleanup Statistics")
duration_plot_output = gr.Image(label="Distribution of Call Durations")
satisfaction_plot_output = gr.Image(label="Satisfaction Scores by Agent")
language_plot_output = gr.Image(label="Query Frequency by Language")
csv_download = gr.File(label="Download Cleaned CSV")
pdf_download = gr.File(label="Download PDF Report")
# Connect the button to the analysis function
analyze_button.click(
fn=analyze_data,
inputs=None,
outputs=[
raw_data_output,
cleanup_stats_output,
duration_plot_output,
satisfaction_plot_output,
language_plot_output,
csv_download,
pdf_download
]
)
demo.launch() |