Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
from reportlab.lib.pagesizes import letter
|
9 |
+
from reportlab.pdfgen import canvas
|
10 |
+
from reportlab.lib.utils import ImageReader
|
11 |
+
|
12 |
+
# Load the call center logs CSV (assumed to be uploaded to the Space)
|
13 |
+
CSV_FILE_PATH = "call_center_logs.csv"
|
14 |
+
|
15 |
+
# Data cleanup function
|
16 |
+
def clean_data(df):
|
17 |
+
original_count = len(df)
|
18 |
+
cleanup_details = {
|
19 |
+
'original': original_count,
|
20 |
+
'nulls_removed': 0,
|
21 |
+
'duplicates_removed': 0,
|
22 |
+
'short_removed': 0,
|
23 |
+
'malformed_removed': 0,
|
24 |
+
'invalid_timestamps': 0
|
25 |
+
}
|
26 |
+
|
27 |
+
# Remove nulls in critical columns
|
28 |
+
critical_columns = ['query', 'resolution', 'duration_minutes', 'satisfaction_score']
|
29 |
+
null_rows = df[critical_columns].isna().any(axis=1)
|
30 |
+
cleanup_details['nulls_removed'] = null_rows.sum()
|
31 |
+
df = df[~null_rows]
|
32 |
+
|
33 |
+
# Remove duplicates based on call_id
|
34 |
+
duplicate_rows = df['call_id'].duplicated()
|
35 |
+
cleanup_details['duplicates_removed'] = duplicate_rows.sum()
|
36 |
+
df = df[~duplicate_rows]
|
37 |
+
|
38 |
+
# Remove short queries
|
39 |
+
short_rows = (df['query'].str.len() < 5) | (df['resolution'].str.len() < 5)
|
40 |
+
cleanup_details['short_removed'] = short_rows.sum()
|
41 |
+
df = df[~short_rows]
|
42 |
+
|
43 |
+
# Remove malformed queries
|
44 |
+
malformed_rows = df['query'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
|
45 |
+
cleanup_details['malformed_removed'] = malformed_rows.sum()
|
46 |
+
df = df[~malformed_rows]
|
47 |
+
|
48 |
+
# Validate and clean timestamps
|
49 |
+
invalid_timestamps = pd.to_datetime(df['timestamp'], errors='coerce').isna()
|
50 |
+
cleanup_details['invalid_timestamps'] = invalid_timestamps.sum()
|
51 |
+
df = df[~invalid_timestamps]
|
52 |
+
|
53 |
+
# Standardize language (fill missing with 'en')
|
54 |
+
df['language'] = df['language'].fillna('en')
|
55 |
+
|
56 |
+
# Convert duration and satisfaction score to numeric
|
57 |
+
df['duration_minutes'] = pd.to_numeric(df['duration_minutes'], errors='coerce')
|
58 |
+
df['satisfaction_score'] = pd.to_numeric(df['satisfaction_score'], errors='coerce')
|
59 |
+
|
60 |
+
cleaned_count = len(df)
|
61 |
+
cleanup_details['cleaned'] = cleaned_count
|
62 |
+
cleanup_details['removed'] = original_count - cleaned_count
|
63 |
+
|
64 |
+
# Save cleaned CSV for SageMaker/Azure AI
|
65 |
+
cleaned_path = 'cleaned_call_center_logs.csv'
|
66 |
+
df.to_csv(cleaned_path, index=False)
|
67 |
+
|
68 |
+
return df, cleanup_details, cleaned_path
|
69 |
+
|
70 |
+
# Statistical plotting function
|
71 |
+
def plot_statistics(df):
|
72 |
+
# Plot 1: Distribution of Call Durations
|
73 |
+
plt.figure(figsize=(10, 6))
|
74 |
+
sns.histplot(df['duration_minutes'], bins=20, kde=True, color='skyblue')
|
75 |
+
plt.title('Distribution of Call Durations')
|
76 |
+
plt.xlabel('Duration (minutes)')
|
77 |
+
plt.ylabel('Frequency')
|
78 |
+
plt.savefig('duration_distribution.png')
|
79 |
+
plt.close()
|
80 |
+
|
81 |
+
# Plot 2: Satisfaction Scores by Agent
|
82 |
+
plt.figure(figsize=(10, 6))
|
83 |
+
sns.boxplot(x='agent_id', y='satisfaction_score', data=df, color='lightblue')
|
84 |
+
plt.title('Satisfaction Scores by Agent')
|
85 |
+
plt.xlabel('Agent ID')
|
86 |
+
plt.ylabel('Satisfaction Score')
|
87 |
+
plt.savefig('satisfaction_by_agent.png')
|
88 |
+
plt.close()
|
89 |
+
|
90 |
+
# Plot 3: Query Frequency by Language
|
91 |
+
plt.figure(figsize=(10, 6))
|
92 |
+
sns.countplot(x='language', data=df, color='skyblue')
|
93 |
+
plt.title('Query Frequency by Language')
|
94 |
+
plt.xlabel('Language')
|
95 |
+
plt.ylabel('Number of Queries')
|
96 |
+
plt.savefig('query_by_language.png')
|
97 |
+
plt.close()
|
98 |
+
|
99 |
+
return ['duration_distribution.png', 'satisfaction_by_agent.png', 'query_by_language.png']
|
100 |
+
|
101 |
+
# Generate PDF report
|
102 |
+
def generate_pdf_report(cleanup_details, plot_paths):
|
103 |
+
pdf_path = 'data_analysis_report.pdf'
|
104 |
+
c = canvas.Canvas(pdf_path, pagesize=letter)
|
105 |
+
width, height = letter
|
106 |
+
|
107 |
+
# Title
|
108 |
+
c.setFont("Helvetica-Bold", 16)
|
109 |
+
c.drawString(50, height - 50, "Call Center Data Analysis Report")
|
110 |
+
|
111 |
+
# Cleanup Stats
|
112 |
+
c.setFont("Helvetica", 12)
|
113 |
+
y_position = height - 80
|
114 |
+
c.drawString(50, y_position, "Data Cleanup Statistics:")
|
115 |
+
y_position -= 20
|
116 |
+
for key, value in cleanup_details.items():
|
117 |
+
c.drawString(70, y_position, f"{key.replace('_', ' ').title()}: {value}")
|
118 |
+
y_position -= 15
|
119 |
+
|
120 |
+
# Add Plots
|
121 |
+
y_position -= 30
|
122 |
+
for plot_path in plot_paths:
|
123 |
+
if os.path.exists(plot_path):
|
124 |
+
img = ImageReader(plot_path)
|
125 |
+
img_width, img_height = img.getSize()
|
126 |
+
aspect = img_height / float(img_width)
|
127 |
+
plot_width = 500
|
128 |
+
plot_height = plot_width * aspect
|
129 |
+
if y_position - plot_height < 50:
|
130 |
+
c.showPage()
|
131 |
+
y_position = height - 50
|
132 |
+
c.drawImage(img, 50, y_position - plot_height, width=plot_width, height=plot_height)
|
133 |
+
y_position -= plot_height + 20
|
134 |
+
|
135 |
+
c.save()
|
136 |
+
return pdf_path
|
137 |
+
|
138 |
+
# Main analysis function
|
139 |
+
def analyze_data():
|
140 |
+
try:
|
141 |
+
# Load the CSV
|
142 |
+
df = pd.read_csv(CSV_FILE_PATH)
|
143 |
+
|
144 |
+
# Clean the data
|
145 |
+
cleaned_df, cleanup_details, cleaned_path = clean_data(df)
|
146 |
+
|
147 |
+
# Generate statistical plots
|
148 |
+
plot_paths = plot_statistics(cleaned_df)
|
149 |
+
|
150 |
+
# Generate PDF report
|
151 |
+
pdf_path = generate_pdf_report(cleanup_details, plot_paths)
|
152 |
+
|
153 |
+
# Prepare cleanup stats for display
|
154 |
+
cleanup_stats = "\n".join([f"{key.replace('_', ' ').title()}: {value}" for key, value in cleanup_details.items()])
|
155 |
+
|
156 |
+
return (
|
157 |
+
cleaned_df.head(50).to_html(), # Display first 50 rows as a table
|
158 |
+
cleanup_stats,
|
159 |
+
plot_paths[0], # Duration distribution
|
160 |
+
plot_paths[1], # Satisfaction by agent
|
161 |
+
plot_paths[2], # Query by language
|
162 |
+
gr.File(value=cleaned_path, label="Download Cleaned CSV"),
|
163 |
+
gr.File(value=pdf_path, label="Download PDF Report")
|
164 |
+
)
|
165 |
+
except Exception as e:
|
166 |
+
return f"Error: {str(e)}", "", None, None, None, None, None
|
167 |
+
|
168 |
+
# Gradio interface
|
169 |
+
custom_css = """
|
170 |
+
body {
|
171 |
+
background: linear-gradient(135deg, #1a1a1a 0%, #2a2a2a 100%);
|
172 |
+
color: #e0e0e0;
|
173 |
+
font-family: 'Arial', sans-serif;
|
174 |
+
display: flex;
|
175 |
+
justify-content: center;
|
176 |
+
align-items: center;
|
177 |
+
min-height: 100vh;
|
178 |
+
margin: 0;
|
179 |
+
}
|
180 |
+
.gr-box {
|
181 |
+
background: #3a3a3a;
|
182 |
+
border: 1px solid #4a4a4a;
|
183 |
+
border-radius: 8px;
|
184 |
+
padding: 20px;
|
185 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
|
186 |
+
}
|
187 |
+
.gr-button {
|
188 |
+
background: #1e90ff;
|
189 |
+
color: white;
|
190 |
+
border-radius: 5px;
|
191 |
+
padding: 12px 20px;
|
192 |
+
margin: 8px 0;
|
193 |
+
width: 100%;
|
194 |
+
text-align: center;
|
195 |
+
transition: background 0.3s ease;
|
196 |
+
font-size: 16px;
|
197 |
+
}
|
198 |
+
.gr-button:hover {
|
199 |
+
background: #1c86ee;
|
200 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2);
|
201 |
+
}
|
202 |
+
.gr-textbox {
|
203 |
+
background: #2f2f2f;
|
204 |
+
color: #e0e0e0;
|
205 |
+
border: 1px solid #4a4a4a;
|
206 |
+
border-radius: 5px;
|
207 |
+
margin-bottom: 15px;
|
208 |
+
font-size: 16px;
|
209 |
+
padding: 15px;
|
210 |
+
min-height: 120px;
|
211 |
+
width: 100%;
|
212 |
+
}
|
213 |
+
.gr-image {
|
214 |
+
width: 100%;
|
215 |
+
height: auto;
|
216 |
+
max-height: 400px;
|
217 |
+
}
|
218 |
+
#app-container {
|
219 |
+
max-width: 900px;
|
220 |
+
width: 100%;
|
221 |
+
padding: 20px;
|
222 |
+
background: #252525;
|
223 |
+
border-radius: 12px;
|
224 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5);
|
225 |
+
}
|
226 |
+
.text-center {
|
227 |
+
text-align: center;
|
228 |
+
margin-bottom: 20px;
|
229 |
+
}
|
230 |
+
"""
|
231 |
+
|
232 |
+
with gr.Blocks(css=custom_css) as demo:
|
233 |
+
with gr.Column(elem_id="app-container"):
|
234 |
+
gr.Markdown("# Call Center Data Analysis", elem_classes="text-center")
|
235 |
+
gr.Markdown("Analyze call center logs, view statistics, and export cleaned data for SageMaker/Azure AI.", elem_classes="text-center")
|
236 |
+
|
237 |
+
# Button to trigger analysis
|
238 |
+
analyze_button = gr.Button("Analyze Data")
|
239 |
+
|
240 |
+
# Outputs
|
241 |
+
raw_data_output = gr.HTML(label="Raw Data (First 50 Rows)")
|
242 |
+
cleanup_stats_output = gr.Textbox(label="Data Cleanup Statistics")
|
243 |
+
duration_plot_output = gr.Image(label="Distribution of Call Durations")
|
244 |
+
satisfaction_plot_output = gr.Image(label="Satisfaction Scores by Agent")
|
245 |
+
language_plot_output = gr.Image(label="Query Frequency by Language")
|
246 |
+
csv_download = gr.File(label="Download Cleaned CSV")
|
247 |
+
pdf_download = gr.File(label="Download PDF Report")
|
248 |
+
|
249 |
+
# Connect the button to the analysis function
|
250 |
+
analyze_button.click(
|
251 |
+
fn=analyze_data,
|
252 |
+
inputs=None,
|
253 |
+
outputs=[
|
254 |
+
raw_data_output,
|
255 |
+
cleanup_stats_output,
|
256 |
+
duration_plot_output,
|
257 |
+
satisfaction_plot_output,
|
258 |
+
language_plot_output,
|
259 |
+
csv_download,
|
260 |
+
pdf_download
|
261 |
+
]
|
262 |
+
)
|
263 |
+
|
264 |
+
demo.launch()
|