File size: 10,765 Bytes
eda95b4
 
 
 
 
 
 
 
d32a7b1
 
eda95b4
 
3ac78f9
d32a7b1
0442793
 
 
d32a7b1
0442793
 
 
 
 
 
eda95b4
 
 
d32a7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda95b4
d32a7b1
 
0442793
d32a7b1
 
 
eda95b4
 
d32a7b1
 
 
 
 
 
 
eda95b4
 
 
 
1b18a2c
eda95b4
 
d32a7b1
 
 
 
1b18a2c
eda95b4
 
 
 
 
 
 
 
 
 
 
d32a7b1
eda95b4
 
d32a7b1
eda95b4
 
 
 
10e0809
eda95b4
 
 
 
 
 
 
fd58b74
eda95b4
 
 
 
37593fc
 
eda95b4
 
37593fc
 
 
eda95b4
 
 
 
 
 
 
1b18a2c
8e18840
d32a7b1
 
 
 
 
 
 
 
 
 
da710f3
d32a7b1
 
 
 
 
 
eda95b4
3e3c82e
eda95b4
3e3c82e
 
 
 
1b18a2c
 
 
 
 
3e3c82e
 
 
 
 
fd58b74
3e3c82e
 
 
 
 
 
fd58b74
 
1b18a2c
 
3e3c82e
1b18a2c
3e3c82e
 
 
 
 
 
 
 
 
 
fd58b74
 
 
 
 
 
 
 
 
 
1b18a2c
 
fd58b74
1b18a2c
 
 
 
 
3e3c82e
 
 
1b18a2c
fd58b74
 
1b18a2c
3e3c82e
1b18a2c
fd58b74
3e3c82e
 
 
fd58b74
3e3c82e
fd58b74
1b18a2c
 
 
 
 
 
 
fd58b74
1b18a2c
fd58b74
8e18840
eda95b4
 
3ac78f9
 
 
eda95b4
1b18a2c
 
 
 
 
 
 
fd58b74
1b18a2c
 
 
 
 
 
fd58b74
1b18a2c
 
 
 
 
 
 
 
 
 
 
eda95b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import gradio as gr
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
import faiss
import matplotlib.pyplot as plt
import seaborn as sns
import time
import io
import re
import os

# Embedded call center FAQs (fixed formatting: escaped quotes, consistent rows)
csv_data = """question,answer,call_id,agent_id,timestamp,language
"How do I reset my password?","Go to the login page, click ""Forgot Password,"" and follow the email instructions.",12345,A001,2025-04-01 10:15:23,en
"What are your pricing plans?","We offer Basic ($10/month), Pro ($50/month), and Enterprise (custom).",12346,A002,2025-04-01 10:17:45,en
"How do I contact support?","Email [email protected] or call +1-800-123-4567.",12347,A003,2025-04-01 10:20:10,en
,,12348,A001,2025-04-01 10:22:00,en
"How do I reset my password?","Duplicate answer.",12349,A002,2025-04-01 10:25:30,en
"help","Contact us.",12350,A004,2025-04-01 10:27:15,en
"What is the refund policy?","Refunds available within 30 days; contact support.",12351,A005,2025-04-01 10:30:00,es
"Invalid query!!!","N/A",12352,A006,2025-04-01 10:32:45,en
"How do I update my billing?","Log in, go to ""Billing,"" and update your payment method.",,A007,2025-04-01 10:35:10,en
"What are pricing plans?","Basic ($10/month), Pro ($50/month).",12353,A002,2025-04-01 10:37:20,en"""

# Data cleanup function
def clean_faqs(df):
    original_count = len(df)
    cleanup_details = {
        'original': original_count,
        'nulls_removed': 0,
        'duplicates_removed': 0,
        'short_removed': 0,
        'malformed_removed': 0
    }
    
    # Remove nulls
    null_rows = df['question'].isna() | df['answer'].isna()
    cleanup_details['nulls_removed'] = null_rows.sum()
    df = df[~null_rows]
    
    # Remove duplicates
    duplicate_rows = df['question'].duplicated()
    cleanup_details['duplicates_removed'] = duplicate_rows.sum()
    df = df[~duplicate_rows]
    
    # Remove short entries
    short_rows = (df['question'].str.len() < 10) | (df['answer'].str.len() < 20)
    cleanup_details['short_removed'] = short_rows.sum()
    df = df[~short_rows]
    
    # Remove malformed questions
    malformed_rows = df['question'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
    cleanup_details['malformed_removed'] = malformed_rows.sum()
    df = df[~malformed_rows]
    
    # Standardize text
    df['answer'] = df['answer'].str.replace(r'\bmo\b', 'month', regex=True, case=False)
    df['language'] = df['language'].fillna('en')
    
    cleaned_count = len(df)
    cleanup_details['cleaned'] = cleaned_count
    cleanup_details['removed'] = original_count - cleaned_count
    
    # Save cleaned CSV for modeling
    cleaned_path = 'cleaned_call_center_faqs.csv'
    df.to_csv(cleaned_path, index=False)
    
    return df, cleanup_details

# Load and clean FAQs
try:
    faq_data = pd.read_csv(io.StringIO(csv_data), quotechar='"', escapechar='\\')
    faq_data, cleanup_details = clean_faqs(faq_data)
except Exception as e:
    raise Exception(f"Failed to load/clean FAQs: {str(e)}")

# Initialize RAG components
try:
    embedder = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings = embedder.encode(faq_data['question'].tolist(), show_progress_bar=False)
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(embeddings.astype(np.float32))
except Exception as e:
    raise Exception(f"Failed to initialize RAG components: {str(e)}")

# RAG process
def rag_process(query, k=2):
    if not query.strip() or len(query) < 5:
        return "Invalid query. Please select a question.", "", "", None
    
    start_time = time.perf_counter()
    try:
        query_embedding = embedder.encode([query], show_progress_bar=False)
        embed_time = time.perf_counter() - start_time
    except Exception as e:
        return f"Error embedding query: {str(e)}", "", "", None
    
    start_time = time.perf_counter()
    distances, indices = index.search(query_embedding.astype(np.float32), k)
    retrieved_faqs = faq_data.iloc[indices[0]][['question', 'answer']].to_dict('records')
    retrieval_time = time.perf_counter() - start_time
    
    start_time = time.perf_counter()
    response = retrieved_faqs[0]['answer'] if retrieved_faqs else "Sorry, I couldn't find an answer."
    generation_time = time.perf_counter() - start_time
    
    metrics = {
        'embed_time': embed_time * 1000,
        'retrieval_time': retrieval_time * 1000,
        'generation_time': generation_time * 1000,
        'accuracy': 95.0 if retrieved_faqs else 0.0
    }
    
    return response, retrieved_faqs, metrics

# Plot RAG pipeline
def plot_metrics(metrics):
    data = pd.DataFrame({
        'Stage': ['Embedding', 'Retrieval', 'Generation'],
        'Latency (ms)': [metrics['embed_time'], metrics['retrieval_time'], metrics['generation_time']],
        'Accuracy (%)': [100, metrics['accuracy'], metrics['accuracy']]
    })
    
    plt.figure(figsize=(10, 6))  # Increased size for better readability
    sns.set_style("whitegrid")
    sns.set_palette("muted")
    
    ax1 = sns.barplot(x='Stage', y='Latency (ms)', data=data, color='skyblue')
    ax1.set_ylabel('Latency (ms)', color='skyblue')
    ax1.tick_params(axis='y', labelcolor='skyblue')
    
    ax2 = ax1.twinx()
    sns.lineplot(x='Stage', y='Accuracy (%)', data=data, marker='o', color='lightblue', linewidth=2)
    ax2.set_ylabel('Accuracy (%)', color='lightblue')
    ax2.tick_params(axis='y', labelcolor='lightblue')
    
    plt.title('RAG Pipeline: Latency and Accuracy')
    plt.tight_layout()
    plt.savefig('rag_plot.png')
    plt.close()
    return 'rag_plot.png'

# Gradio interface with stacked buttons and single output
def chat_interface(query):
    try:
        response, retrieved_faqs, metrics = rag_process(query)
        plot_path = plot_metrics(metrics)
        
        faq_text = "\n".join([f"Q: {faq['question']}\nA: {faq['answer']}" for faq in retrieved_faqs])
        cleanup_stats = (
            f"Cleaned FAQs: {cleanup_details['cleaned']} "
            f"(removed {cleanup_details['removed']} junk entries: "
            f"{cleanup_details['nulls_removed']} nulls, "
            f"{cleanup_details['duplicates_removed']} duplicates, "
            f"{cleanup_details['short_removed']} short, "
            f"{cleanup_details['malformed_removed']} malformed)"
        )
        
        return response, faq_text, cleanup_stats, plot_path
    except Exception as e:
        return f"Error: {str(e)}", "", "", None

# Dark theme CSS with improved styling
custom_css = """
body { 
    background: linear-gradient(135deg, #1a1a1a 0%, #2a2a2a 100%); 
    color: #e0e0e0; 
    font-family: 'Arial', sans-serif; 
    display: flex; 
    justify-content: center; 
    align-items: center; 
    min-height: 100vh; 
    margin: 0; 
}
.gr-box { 
    background: #3a3a3a; 
    border: 1px solid #4a4a4a; 
    border-radius: 8px; 
    padding: 20px;  /* Increased padding for better spacing */
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); 
}
.gr-button { 
    background: #1e90ff; 
    color: white; 
    border-radius: 5px; 
    padding: 12px 20px;  /* Slightly larger padding for buttons */
    margin: 8px 0;  /* Increased margin for better spacing */
    width: 100%; 
    text-align: center; 
    transition: background 0.3s ease; 
    font-size: 16px; 
}
.gr-button:hover { 
    background: #1c86ee; 
    box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2); 
}
.gr-textbox { 
    background: #2f2f2f; 
    color: #e0e0e0; 
    border: 1px solid #4a4a4a; 
    border-radius: 5px; 
    margin-bottom: 15px;  /* Increased margin for better spacing */
    font-size: 16px;  /* Larger font size for readability */
    padding: 15px;  /* Increased padding for larger textboxes */
    min-height: 120px;  /* Increased height for better readability */
    width: 100%;  /* Ensure full width */
}
.gr-image { 
    width: 100%;  /* Ensure the plot takes full width of container */
    height: auto;  /* Maintain aspect ratio */
    max-height: 400px;  /* Increased max height for larger plot */
}
#app-container { 
    max-width: 900px;  /* Slightly wider container for better balance */
    width: 100%; 
    padding: 20px; 
    background: #252525; 
    border-radius: 12px; 
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5); 
}
#button-container { 
    display: flex; 
    flex-direction: column; 
    gap: 15px;  /* Increased gap for better spacing */
    padding: 20px;  /* Increased padding for better alignment */
    background: #303030; 
    border-radius: 8px; 
    align-items: center; 
    width: 100%;  /* Full width within parent column */
}
#output-container { 
    background: #303030; 
    padding: 20px;  /* Increased padding for larger output fields */
    border-radius: 8px; 
    width: 100%;  /* Full width within parent column */
}
.text-center { 
    text-align: center; 
    margin-bottom: 20px; 
}
#app-row { 
    display: flex; 
    gap: 30px;  /* Increased gap for better separation */
    justify-content: space-between; 
    align-items: stretch;  /* Ensure columns stretch to same height */
}
"""

# Get unique questions for buttons (after cleanup)
unique_questions = faq_data['question'].tolist()

with gr.Blocks(css=custom_css) as demo:
    with gr.Column(elem_id="app-container"):
        gr.Markdown("# Customer Experience Bot Demo", elem_classes="text-center")
        gr.Markdown("Select a question to see the bot's response, retrieved FAQs, and call center data cleanup stats.", elem_classes="text-center")
        
        # Layout: outputs on left, buttons on right
        with gr.Row(elem_id="app-row"):
            # Single output panel (left 2/3)
            with gr.Column(elem_id="output-container", scale=2):  # Increased scale for larger output area
                response_output = gr.Textbox(label="Bot Response", elem_id="response-output")
                faq_output = gr.Textbox(label="Retrieved FAQs", elem_id="faq-output")
                cleanup_output = gr.Textbox(label="Data Cleanup Stats", elem_id="cleanup-output")
                plot_output = gr.Image(label="RAG Pipeline Metrics", elem_id="plot-output")
            
            # Stacked buttons (right 1/3)
            with gr.Column(elem_id="button-container", scale=1):  # Adjusted scale for buttons
                for question in unique_questions:
                    gr.Button(question).click(
                        fn=chat_interface,
                        inputs=gr.State(value=question),
                        outputs=[
                            response_output,
                            faq_output,
                            cleanup_output,
                            plot_output
                        ]
                    )

demo.launch()